Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 020000, Kazakhstan.
Departement of Mathematics, Statistics and Computer Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
Medicina (Kaunas). 2022 Feb 8;58(2):253. doi: 10.3390/medicina58020253.
Coronavirus disease 19 (COVID-19) has emerged as the most devastating syndemic of the 21st century, with worrisome and sustained consequences for the entire society. Despite the relative success of vaccination programs, the global threat of the novel coronavirus SARS-CoV-2 is still present and further efforts are needed for its containment and control. Essential for its control and containment is getting closer to understanding the actual extent of SARS-CoV-2 infections. We present a model based on the mortality data of Kazakhstan for the estimation of the underlying epidemic dynamic-with both the lag time from infection to death and the infection fatality rate. For the estimation of the actual number of infected individuals in Kazakhstan, we used both back-casting and capture-recapture methods. Our results suggest that despite the increased testing capabilities in Kazakhstan, official case reporting undercounts the number of infections by at least 60%. Even though our count of deaths may be either over or underestimated, our methodology could be a more accurate approach for the following: the estimation of the actual magnitude of the pandemic; aiding the identification of different epidemiological values; and reducing data bias. For optimal epidemiological surveillance and control efforts, our study may lead to an increased awareness of the effect of COVID-19 in this region and globally, and aid in the implementation of more effective screening and diagnostic measures.
新型冠状病毒病(COVID-19)已成为 21 世纪最具破坏性的综合征之一,给整个社会带来了令人担忧且持续的后果。尽管疫苗接种计划取得了相对成功,但新型冠状病毒 SARS-CoV-2 的全球威胁仍然存在,需要进一步努力加以控制。控制和遏制该病毒的关键是更深入地了解 SARS-CoV-2 感染的实际程度。
我们提出了一个基于哈萨克斯坦死亡率数据的模型,用于估计潜在的疫情动态,包括从感染到死亡的时间滞后和感染病死率。为了估计哈萨克斯坦实际感染人数,我们同时使用了回溯和捕获再捕获方法。
我们的研究结果表明,尽管哈萨克斯坦的检测能力有所提高,但官方报告的病例数至少低估了感染人数的 60%。尽管我们对死亡人数的估计可能偏高或偏低,但我们的方法可能是一种更准确的方法,可用于:估计大流行的实际规模;辅助确定不同的流行病学值;减少数据偏差。
为了进行最佳的流行病学监测和控制,我们的研究可能会提高人们对该地区和全球 COVID-19 影响的认识,并有助于实施更有效的筛查和诊断措施。