Suppr超能文献

利用空间分辨代谢组学进行甲状腺肿瘤的分子病理诊断。

Molecular Pathological Diagnosis of Thyroid Tumors Using Spatially Resolved Metabolomics.

机构信息

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.

出版信息

Molecules. 2022 Feb 18;27(4):1390. doi: 10.3390/molecules27041390.

Abstract

The pathological diagnosis of benign and malignant follicular thyroid tumors remains a major challenge using the current histopathological technique. To improve diagnosis accuracy, spatially resolved metabolomics analysis based on air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) technique was used to establish a molecular diagnostic strategy for discriminating four pathological types of thyroid tumor. Without any specific labels, numerous metabolite features with their spatial distribution information can be acquired by AFADESI-MSI. The underlying metabolic heterogeneity can be visualized in line with the cellular heterogeneity in native tumor tissue. Through micro-regional feature extraction and in situ metabolomics analysis, three sets of metabolic biomarkers for the visual discrimination of benign follicular adenoma and differentiated thyroid carcinomas were discovered. Additionally, the automated prediction of tumor foci was supported by a diagnostic model based on the metabolic profile of 65 thyroid nodules. The model prediction accuracy was 83.3% when a test set of 12 independent samples was used. This diagnostic strategy presents a new way of performing in situ pathological examinations using small molecular biomarkers and provides a model diagnosis for clinically indeterminate thyroid tumor cases.

摘要

使用当前的组织病理学技术,对良、恶性滤泡性甲状腺肿瘤进行病理诊断仍然是一个重大挑战。为了提高诊断准确性,采用基于气流辅助解吸电喷雾电离质谱成像(AFADESI-MSI)技术的空间分辨代谢组学分析,建立了一种用于区分四种甲状腺肿瘤病理类型的分子诊断策略。无需任何特定的标签,通过 AFADESI-MSI 可以获得具有空间分布信息的大量代谢物特征。根据细胞异质性,以线的形式可视化潜在的代谢异质性,反映在天然肿瘤组织中。通过微区特征提取和原位代谢组学分析,发现了三组用于良性滤泡性腺瘤和分化型甲状腺癌的可视化区分的代谢生物标志物。此外,还通过基于 65 个甲状腺结节代谢特征的诊断模型,支持对肿瘤灶的自动预测。当使用 12 个独立样本的测试集时,模型预测准确率为 83.3%。这种诊断策略为使用小分子生物标志物进行原位病理检查提供了一种新方法,并为临床不确定的甲状腺肿瘤病例提供了模型诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/072b/8876246/e53e6d97389a/molecules-27-01390-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验