Charpentier-Alfaro Camila, Benavides-Hernández Jorge, Poggerini Marco, Crisci Alfonso, Mele Giacomo, Della Rocca Gianni, Emiliani Giovanni, Frascella Angela, Torrigiani Tommaso, Palanti Sabrina
Istituto per la Bioeconomia (IBE), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Firenze, Italy.
Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica.
Materials (Basel). 2023 May 5;16(9):3547. doi: 10.3390/ma16093547.
Addressing the impacts of climate change and global warming has become an urgent priority for the planet's well-being. In recent decades the great potential of fungal-based products with characteristics equal to, or even outperforming, classic petroleum-derived products has been acknowledged. These new materials present the added advantage of having a reduced carbon footprint, less environmental impact and contributing to the shift away from a fossil-based economy. This study focused on the production of insulation panels using fungal mycelium and lignocellulosic materials as substrates. The process was optimized, starting with the selection of , , , and isolates, followed by the evaluation of three grain spawn substrates (millet, wheat and a 1:1 mix of millet and wheat grains) for mycelium propagation, and finishing with the production of various mycelium-based composites using five wood by-products and waste materials (pine sawdust, oak shavings, tree of heaven wood chips, wheat straw and shredded beech wood). The obtained biomaterials were characterized for internal structure by X-ray micro-CT, thermal transmittance using a thermoflowmeter and moisture absorption. The results showed that using a wheat and millet 1:1 (/) mix is the best option for spawn production regardless of the fungal isolate. In addition, the performance of the final composites was influenced both by the fungal isolate and the substrate used, with the latter having a stronger effect on the measured properties. The study shows that the most promising sustainable insulating biomaterial was created using grown on wheat straw.
应对气候变化和全球变暖的影响已成为关乎地球福祉的紧迫优先事项。近几十年来,人们已经认识到基于真菌的产品具有巨大潜力,其特性等同于甚至优于传统的石油衍生产品。这些新材料具有碳足迹减少、对环境影响较小以及有助于推动从化石经济转型等额外优势。本研究聚焦于以真菌菌丝体和木质纤维素材料为底物生产保温板。该过程进行了优化,首先选择了 、 、 、 和 菌株,接着评估了三种谷粒菌种底物(小米、小麦以及小米和小麦 grains 的 1:1 混合物)用于菌丝体繁殖,最后使用五种木材副产品和废料(松木锯末、橡木刨花、臭椿木屑、小麦秸秆和碎山毛榉木)生产各种基于菌丝体的复合材料。通过 X 射线微计算机断层扫描对所得生物材料的内部结构进行表征,使用热流计测量热传递率并测定吸湿率。结果表明,无论使用哪种真菌菌株,使用 1:1(/)的小麦和小米混合物都是生产菌种的最佳选择。此外,最终复合材料的性能受到真菌菌株和所用底物的影响,其中底物对所测性能的影响更强。该研究表明,使用在小麦秸秆上生长的 制备出了最具前景的可持续绝缘生物材料。