Suppr超能文献

使用 SUMO 从多组学数据集中检测分子亚型。

Detecting molecular subtypes from multi-omics datasets using SUMO.

机构信息

Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA.

These authors contributed equally.

出版信息

Cell Rep Methods. 2022 Jan 24;2(1). doi: 10.1016/j.crmeth.2021.100152. Epub 2022 Jan 14.

Abstract

We present a data integration framework that uses non-negative matrix factorization of patient-similarity networks to integrate continuous multi-omics datasets for molecular subtyping. It is demonstrated to have the capability to handle missing data without using imputation and to be consistently among the best in detecting subtypes with differential prognosis and enrichment of clinical associations in a large number of cancers. When applying the approach to data from individuals with lower-grade gliomas, we identify a subtype with a significantly worse prognosis. Tumors assigned to this subtype are hypomethylated genome wide with a gain of AP-1 occupancy in demethylated distal enhancers. The tumors are also enriched for somatic chromosome 7 (chr7) gain, chr10 loss, and other molecular events that have been suggested as diagnostic markers for " wild type, with molecular features of glioblastoma" by the cIMPACT-NOW consortium but have yet to be included in the World Health Organization (WHO) guidelines.

摘要

我们提出了一个数据整合框架,该框架使用患者相似度网络的非负矩阵分解来整合连续的多组学数据集,以进行分子亚型分析。该框架具有在不使用插补的情况下处理缺失数据的能力,并且在大量癌症中,在检测具有不同预后和临床关联富集的亚型方面一直处于最佳之列。当将该方法应用于低级别神经胶质瘤个体的数据时,我们确定了一种预后明显较差的亚型。这些肿瘤在全基因组范围内呈低甲基化状态,在去甲基化的远端增强子中获得了 AP-1 占据。这些肿瘤还富集了体细胞染色体 7(chr7)增益、chr10 缺失以及其他分子事件,这些事件已被 cIMPACT-NOW 联盟提议为“野生型,具有胶质母细胞瘤的分子特征”的诊断标志物,但尚未被世界卫生组织(WHO)指南所包含。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f0f/9017148/e34c6fb0c693/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验