Department of Neurology, University Hospital Munich, Ludwig Maximilians University, Munich, Germany.
German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany.
Cerebellum. 2023 Apr;22(2):194-205. doi: 10.1007/s12311-022-01374-8. Epub 2022 Feb 25.
Humans are able to estimate head movements accurately despite the short half-life of information coming from our inner ear motion sensors. The observation that the central angular velocity estimate outlives the decaying signal of the semicircular canal afferents led to the concept of a velocity storage mechanism (VSM). The VSM can be activated via visual and vestibular modalities and becomes manifest in ocular motor responses after sustained stimulation like whole-body rotations, optokinetic or galvanic vestibular stimulation (GVS). The VSM has been the focus of many computational modelling approaches; little attention though has been paid to discover its actual structural correlates. Animal studies localized the VSM in the medial and superior vestibular nuclei. A significant modulation by cerebellar circuitries including the uvula and nodulus has been proposed. Nevertheless, the corresponding neuroanatomical structures in humans have not been identified so far. The aim of the present study was to delineate the neural substrates of the VSM using high-resolution infratentorial fMRI with a fast T2* sequence optimized for infratentorial neuroimaging and via video-oculography (VOG). The neuroimaging experiment (n=20) gave first in vivo evidence for an involvement of the vestibular nuclei in the VSM and substantiate a crucial role for cerebellar circuitries. Our results emphasize the importance of cerebellar feedback loops in VSM most likely represented by signal increases in vestibulo-cerebellar hubs like the uvula and nodulus and lobule VIIIA. The delineated activation maps give new insights regarding the function and embedment of Crus I, Crus II, and lobule VII and VIII in the human vestibular system.
尽管来自我们内耳运动传感器的信息半衰期很短,但人类能够准确估计头部运动。观察到中央角速度估计值超过半规管传入神经信号的衰减,导致了速度存储机制(VSM)的概念。VSM 可以通过视觉和前庭模态激活,并在持续刺激(如全身旋转、视动或电前庭刺激(GVS))后表现为眼球运动反应。VSM 一直是许多计算建模方法的焦点;然而,很少有人关注发现其实际的结构相关性。动物研究将 VSM 定位在前庭内侧核和上核。已经提出小脑回路(包括悬雍垂和小结)有显著的调制作用。然而,到目前为止,尚未在人类中识别出相应的神经解剖结构。本研究的目的是使用优化用于颅后神经影像学的快速 T2* 序列的高分辨率颅后 fMRI 和视频眼动描记术 (VOG) 来描绘 VSM 的神经基础。神经影像学实验(n=20)首次提供了前庭核参与 VSM 的体内证据,并证实了小脑回路的关键作用。我们的结果强调了小脑反馈回路在 VSM 中的重要性,这很可能由像悬雍垂和小结以及 VIII 小叶这样的前庭小脑中枢的信号增加来表示。描绘的激活图为人类前庭系统中 Crus I、Crus II 和 VII 和 VIII 小叶的功能和嵌入提供了新的见解。