Suppr超能文献

具有显著抗癌活性的新型硒化合物的药学及安全性评价

Pharmaceutical and Safety Profile Evaluation of Novel Selenocompounds with Noteworthy Anticancer Activity.

作者信息

Marć Małgorzata Anna, Domínguez-Álvarez Enrique, Latacz Gniewomir, Doroz-Płonka Agata, Sanmartín Carmen, Spengler Gabriella, Handzlik Jadwiga

机构信息

Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.

Instituto de Química Orgánica General (IQOG-CSIC), Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain.

出版信息

Pharmaceutics. 2022 Feb 6;14(2):367. doi: 10.3390/pharmaceutics14020367.

Abstract

Prior studies have reported the potent and selective cytotoxic, pro-apoptotic, and chemopreventive activities of a cyclic selenoanhydride and of a series of selenoesters. Some of these selenium derivatives demonstrated multidrug resistance (MDR)-reversing activity in different resistant cancer cell lines. Thus, the aim of this study was to evaluate the pharmaceutical and safety profiles of these selected selenocompounds using alternative methods in silico and in vitro. One of the main tasks of this work was to determine both the physicochemical properties and metabolic stability of these selenoesters. The obtained results proved that these tested selenocompounds could become potential candidates for novel and safe anticancer drugs with good ADMET parameters. The most favorable selenocompounds turned out to be the phthalic selenoanhydride (), two ketone-containing selenoesters with a 4-chlorophenyl moiety ( and ), and a symmetrical selenodiester with a pyridine ring and two selenium atoms ().

摘要

先前的研究报道了一种环状硒酸酐和一系列硒酯具有强大且选择性的细胞毒性、促凋亡和化学预防活性。其中一些硒衍生物在不同的耐药癌细胞系中表现出多药耐药(MDR)逆转活性。因此,本研究的目的是使用计算机模拟和体外替代方法评估这些选定硒化合物的药学和安全性概况。这项工作的主要任务之一是确定这些硒酯的物理化学性质和代谢稳定性。所得结果证明,这些测试的硒化合物可能成为具有良好药物代谢动力学(ADMET)参数的新型安全抗癌药物的潜在候选物。最有利的硒化合物是邻苯二甲酸硒酸酐()、两种含有4-氯苯基部分的含酮硒酯(和)以及一种带有吡啶环和两个硒原子的对称硒二酯()。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/409a/8875489/7c7ef9c0df5d/pharmaceutics-14-00367-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验