Suppr超能文献

基于深度学习的药物性质预测

Drug Properties Prediction Based on Deep Learning.

作者信息

Yoo Soyoung, Kim Junghyun, Choi Guang J

机构信息

Department of Bigdata Engineering, Soonchunhyang University, Asan-si 31538, Korea.

Department of Medical Sciences, Soonchunhyang University, Asan-si 31538, Korea.

出版信息

Pharmaceutics. 2022 Feb 21;14(2):467. doi: 10.3390/pharmaceutics14020467.

Abstract

In recent research on the formulation prediction of oral dissolving drugs, deep learning models with significantly improved performance compared to machine learning models were proposed. However, the performance degradation due to limitations of an imbalanced dataset with a small size and inefficient neural network structure has still not been resolved. Therefore, we propose new deep learning-based prediction models that maximize the prediction performance for disintegration time of oral fast disintegrating films (OFDF) and cumulative dissolution profiles of sustained-release matrix tablets (SRMT). In the case of OFDF, we use principal component analysis (PCA) to reduce the dimensionality of the dataset, thereby improving the prediction performance and reducing the training time. In the case of SRMT, the Wasserstein generative adversarial network (WGAN), a neural network-based generative model, is used to overcome the limitation of performance improvement due to the lack of experimental data. To the best of our knowledge, this is the first work that utilizes WGAN for pharmaceutical formulation prediction. Experimental results show that the proposed methods have superior performance than the existing methods for all the performance metrics considered.

摘要

在最近关于口腔速溶药物配方预测的研究中,提出了与机器学习模型相比性能显著提高的深度学习模型。然而,由于数据集规模小且不均衡以及神经网络结构效率低下所导致的性能下降问题仍未得到解决。因此,我们提出了基于深度学习的新预测模型,以最大化对口腔速崩片(OFDF)崩解时间和缓释骨架片(SRMT)累积溶出曲线的预测性能。对于OFDF,我们使用主成分分析(PCA)来降低数据集的维度,从而提高预测性能并减少训练时间。对于SRMT,基于神经网络的生成模型 Wasserstein 生成对抗网络(WGAN)被用于克服因缺乏实验数据而导致的性能提升受限问题。据我们所知,这是第一项将WGAN用于药物配方预测的工作。实验结果表明,对于所有考虑的性能指标,所提出的方法都比现有方法具有更优的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验