Suppr超能文献

深度贝叶斯无监督终身学习。

Deep Bayesian Unsupervised Lifelong Learning.

机构信息

Department of Information Systems and Analytics, Bryant University, United States of America.

Department of Electrical and Computer Engineering, Northeastern University, United States of America.

出版信息

Neural Netw. 2022 May;149:95-106. doi: 10.1016/j.neunet.2022.02.001. Epub 2022 Feb 10.

Abstract

Lifelong Learning (LL) refers to the ability to continually learn and solve new problems with incremental available information over time while retaining previous knowledge. Much attention has been given lately to Supervised Lifelong Learning (SLL) with a stream of labelled data. In contrast, we focus on resolving challenges in Unsupervised Lifelong Learning (ULL) with streaming unlabelled data when the data distribution and the unknown class labels evolve over time. Bayesian framework is natural to incorporate past knowledge and sequentially update the belief with new data. We develop a fully Bayesian inference framework for ULL with a novel end-to-end Deep Bayesian Unsupervised Lifelong Learning (DBULL) algorithm, which can progressively discover new clusters without forgetting the past with unlabelled data while learning latent representations. To efficiently maintain past knowledge, we develop a novel knowledge preservation mechanism via sufficient statistics of the latent representation for raw data. To detect the potential new clusters on the fly, we develop an automatic cluster discovery and redundancy removal strategy in our inference inspired by Nonparametric Bayesian statistics techniques. We demonstrate the effectiveness of our approach using image and text corpora benchmark datasets in both LL and batch settings.

摘要

终身学习(LL)是指随着时间的推移,不断学习和解决新问题的能力,同时保留以前的知识。最近,人们对有监督终身学习(SLL)给予了很多关注,即使用带有标签的数据的流。相比之下,当数据分布和未知类别标签随时间演变时,我们专注于解决无监督终身学习(ULL)中的挑战,即使用无标签数据的流。贝叶斯框架自然地包含了过去的知识,并随着新数据的出现,对信念进行顺序更新。我们开发了一个具有新颖的端到端深度贝叶斯无监督终身学习(DBULL)算法的 ULL 的全贝叶斯推理框架,该算法可以在不忘记过去的情况下,使用无标签数据逐步发现新的集群,同时学习潜在的表示。为了有效地保留过去的知识,我们通过原始数据的潜在表示的充分统计量开发了一种新的知识保留机制。为了实时检测潜在的新集群,我们在推理中开发了一种自动集群发现和冗余去除策略,这受到非参数贝叶斯统计技术的启发。我们使用图像和文本语料基准数据集在 LL 和批量设置中展示了我们方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e051/8969892/b6d5702e10e0/nihms-1779413-f0001.jpg

相似文献

1
Deep Bayesian Unsupervised Lifelong Learning.深度贝叶斯无监督终身学习。
Neural Netw. 2022 May;149:95-106. doi: 10.1016/j.neunet.2022.02.001. Epub 2022 Feb 10.
2
Lifelong Incremental Reinforcement Learning With Online Bayesian Inference.终身增量强化学习与在线贝叶斯推断。
IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):4003-4016. doi: 10.1109/TNNLS.2021.3055499. Epub 2022 Aug 3.
3
DNB: A Joint Learning Framework for Deep Bayesian Nonparametric Clustering.DNB:深度贝叶斯非参数聚类的联合学习框架
IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):7610-7620. doi: 10.1109/TNNLS.2021.3085891. Epub 2022 Nov 30.
4
Lifelong Generative Adversarial Autoencoder.终身生成对抗自动编码器。
IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):14684-14698. doi: 10.1109/TNNLS.2023.3281091. Epub 2024 Oct 7.
6
Lifelong Teacher-Student Network Learning.终身教师-学生网络学习。
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6280-6296. doi: 10.1109/TPAMI.2021.3092677. Epub 2022 Sep 14.

本文引用的文献

5
Continual lifelong learning with neural networks: A review.神经网络的持续终身学习:综述。
Neural Netw. 2019 May;113:54-71. doi: 10.1016/j.neunet.2019.01.012. Epub 2019 Feb 6.
7
Overcoming catastrophic forgetting in neural networks.克服神经网络中的灾难性遗忘。
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3521-3526. doi: 10.1073/pnas.1611835114. Epub 2017 Mar 14.
8
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
9
Image clustering using local discriminant models and global integration.基于局部判别模型和全局集成的图像聚类。
IEEE Trans Image Process. 2010 Oct;19(10):2761-73. doi: 10.1109/TIP.2010.2049235. Epub 2010 Apr 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验