Department of Information Systems and Analytics, Bryant University, United States of America.
Department of Electrical and Computer Engineering, Northeastern University, United States of America.
Neural Netw. 2022 May;149:95-106. doi: 10.1016/j.neunet.2022.02.001. Epub 2022 Feb 10.
Lifelong Learning (LL) refers to the ability to continually learn and solve new problems with incremental available information over time while retaining previous knowledge. Much attention has been given lately to Supervised Lifelong Learning (SLL) with a stream of labelled data. In contrast, we focus on resolving challenges in Unsupervised Lifelong Learning (ULL) with streaming unlabelled data when the data distribution and the unknown class labels evolve over time. Bayesian framework is natural to incorporate past knowledge and sequentially update the belief with new data. We develop a fully Bayesian inference framework for ULL with a novel end-to-end Deep Bayesian Unsupervised Lifelong Learning (DBULL) algorithm, which can progressively discover new clusters without forgetting the past with unlabelled data while learning latent representations. To efficiently maintain past knowledge, we develop a novel knowledge preservation mechanism via sufficient statistics of the latent representation for raw data. To detect the potential new clusters on the fly, we develop an automatic cluster discovery and redundancy removal strategy in our inference inspired by Nonparametric Bayesian statistics techniques. We demonstrate the effectiveness of our approach using image and text corpora benchmark datasets in both LL and batch settings.
终身学习(LL)是指随着时间的推移,不断学习和解决新问题的能力,同时保留以前的知识。最近,人们对有监督终身学习(SLL)给予了很多关注,即使用带有标签的数据的流。相比之下,当数据分布和未知类别标签随时间演变时,我们专注于解决无监督终身学习(ULL)中的挑战,即使用无标签数据的流。贝叶斯框架自然地包含了过去的知识,并随着新数据的出现,对信念进行顺序更新。我们开发了一个具有新颖的端到端深度贝叶斯无监督终身学习(DBULL)算法的 ULL 的全贝叶斯推理框架,该算法可以在不忘记过去的情况下,使用无标签数据逐步发现新的集群,同时学习潜在的表示。为了有效地保留过去的知识,我们通过原始数据的潜在表示的充分统计量开发了一种新的知识保留机制。为了实时检测潜在的新集群,我们在推理中开发了一种自动集群发现和冗余去除策略,这受到非参数贝叶斯统计技术的启发。我们使用图像和文本语料基准数据集在 LL 和批量设置中展示了我们方法的有效性。