Suppr超能文献

使用深度学习对息肉状脉络膜血管病变和年龄相关性黄斑变性进行临床可解释的鉴别诊断。

Clinical explainable differential diagnosis of polypoidal choroidal vasculopathy and age-related macular degeneration using deep learning.

作者信息

Ma Da, Kumar Meenakshi, Khetan Vikas, Sen Parveen, Bhende Muna, Chen Shuo, Yu Timothy T L, Lee Sieun, Navajas Eduardo V, Matsubara Joanne A, Ju Myeong Jin, Sarunic Marinko V, Raman Rajiv, Beg Mirza Faisal

机构信息

Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA; School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada.

Shri Bhagwan Mahavir Vitreoretinal Service, Medical Research Foundation, Sankara Nethralaya, Chennai, India.

出版信息

Comput Biol Med. 2022 Apr;143:105319. doi: 10.1016/j.compbiomed.2022.105319. Epub 2022 Feb 14.

Abstract

BACKGROUND

This study aims to achieve an automatic differential diagnosis between two types of retinal pathologies with similar pathological features - Polypoidal choroidal vasculopathy (PCV) and wet age-related macular degeneration (AMD) from volumetric optical coherence tomography (OCT) images, and identify clinically-relevant pathological features, using an explainable deep-learning-based framework.

METHODS

This is a retrospective study with data from a cross-sectional cohort. The OCT volume of 73 eyes from 59 patients was included in this study. Disease differentiation was achieved through single-B-scan-based classification followed by a volumetric probability prediction aggregation step. We compared different labeling strategies with and without identifying pathological B-scans within each OCT volume. Clinical interpretability was achieved through normalized aggregation of B-scan-based saliency maps followed by maximum-intensity-projection onto the en face plane. We derived the PCV score from the proposed differential diagnosis framework with different labeling strategies. The en face projection of saliency map was validated with the pathologies identified in Indocyanine green angiography (ICGA).

RESULTS

Model trained with both labeling strategies achieved similar level differentiation power (>90%), with good correspondence between pathological features detected from the projected en face saliency map and ICGA.

CONCLUSIONS

This study demonstrated the potential clinical application of non-invasive differential diagnosis using AI-driven OCT-based analysis, with minimal requirement of labeling efforts, along with clinical explainability achieved through automatically detected disease-related pathologies.

摘要

背景

本研究旨在利用基于深度学习的可解释框架,通过容积光学相干断层扫描(OCT)图像,对具有相似病理特征的两种视网膜病变——息肉样脉络膜血管病变(PCV)和湿性年龄相关性黄斑变性(AMD)实现自动鉴别诊断,并识别临床相关的病理特征。

方法

这是一项基于横断面队列数据的回顾性研究。本研究纳入了59例患者的73只眼的OCT容积数据。通过基于单B扫描的分类,随后进行容积概率预测聚合步骤来实现疾病鉴别。我们比较了在每个OCT容积内识别或不识别病理B扫描的不同标记策略。通过基于B扫描的显著性图的归一化聚合,随后在正面平面上进行最大强度投影来实现临床可解释性。我们从具有不同标记策略的拟鉴别诊断框架中得出PCV评分。通过吲哚菁绿血管造影(ICGA)识别的病变对显著性图的正面投影进行了验证。

结果

采用两种标记策略训练的模型实现了相似水平的鉴别能力(>90%),从正面投影的显著性图中检测到的病理特征与ICGA之间具有良好的对应关系。

结论

本研究证明了使用基于AI的OCT分析进行无创鉴别诊断的潜在临床应用,对标记工作的要求最低,同时通过自动检测与疾病相关的病理实现了临床可解释性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验