Chauhan Joohi, Bedi Jatin
Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
Expert Syst Appl. 2023 Mar 1;213:118939. doi: 10.1016/j.eswa.2022.118939. Epub 2022 Oct 3.
The first case of novel Coronavirus (COVID-19) was reported in December 2019 in Wuhan City, China and led to an international outbreak. This virus causes serious respiratory illness and affects several other organs of the body differently for different patient. Worldwide, several waves of this infection have been reported, and researchers/doctors are working hard to develop novel solutions for the COVID diagnosis. Imaging and vision-based techniques are widely explored for the prediction of COVID-19; however, COVID infection percentage estimation is under explored. In this work, we propose a novel framework for the estimation of COVID-19 infection percentage based on deep learning techniques. The proposed network utilizes the features from vision transformers and CNN (Convolutional Neural Networks), specifically EfficientNet-B7. The features of both are fused together for preparing an information-rich feature vector that contributes to a more precise estimation of infection percentage. We evaluate our model on the Per-COVID-19 dataset (Bougourzi et al., 2021b) which comprises labeled CT data of COVID-19 patients. For the evaluation of the model on this dataset, we employ the most widely-used slice-level metrics, i.e., Pearson correlation coefficient (PC), Mean absolute error (MAE), and Root mean square error (RMSE). The network outperforms the other state-of-the-art methods and achieves , , and , PC, MAE, and RMSE, respectively, using a 5-fold cross-validation technique. In addition, the overall average difference in the actual and predicted infection percentage is observed to be . In conclusion, the detailed experimental results reveal the robustness and efficiency of the proposed network.
2019年12月,中国武汉市报告了首例新型冠状病毒(COVID-19)病例,并引发了全球疫情。这种病毒会导致严重的呼吸道疾病,且对不同患者身体的其他多个器官有不同影响。在全球范围内,已报告了多波这种感染浪潮,研究人员/医生正在努力开发针对COVID诊断的新解决方案。基于成像和视觉的技术被广泛用于预测COVID-19;然而,COVID感染百分比的估计仍有待探索。在这项工作中,我们提出了一种基于深度学习技术估计COVID-19感染百分比的新框架。所提出的网络利用了视觉Transformer和CNN(卷积神经网络)的特征,特别是EfficientNet-B7。将两者的特征融合在一起,以准备一个信息丰富的特征向量,有助于更精确地估计感染百分比。我们在Per-COVID-19数据集(Bougourzi等人,2021b)上评估我们的模型,该数据集包含COVID-19患者的标记CT数据。为了在该数据集上评估模型,我们采用了最广泛使用的切片级指标,即皮尔逊相关系数(PC)、平均绝对误差(MAE)和均方根误差(RMSE)。使用5折交叉验证技术,该网络优于其他现有方法,分别实现了 、 和 的PC、MAE和RMSE。此外,观察到实际感染百分比与预测感染百分比的总体平均差异为 。总之,详细的实验结果揭示了所提出网络的稳健性和效率。