Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Rockville, MD, United States.
Front Immunol. 2022 Feb 10;13:833017. doi: 10.3389/fimmu.2022.833017. eCollection 2022.
In cancer, non-synonymous DNA base changes alter protein sequence and produce neoantigens that are detected by the immune system. For immune detection, neoantigens must first be presented on class I or II human leukocyte antigens (HLA) followed by recognition by peptide-specific receptors, exemplified by the T-cell receptor (TCR). Detection of neoantigens represents a unique challenge to the immune system due to their high similarity with endogenous 'self' proteins. Here, we review insights into how TCRs detect neoantigens from structural studies and delineate two broad mechanistic categories: 1) recognition of mutated 'self' peptides and 2) recognition of novel 'non-self' peptides generated through anchor residue modifications. While mutated 'self' peptides differ only by a single amino acid from an existing 'self' epitope, mutations that form anchor residues generate an entirely new epitope, hitherto unknown to the immune system. We review recent structural studies that highlight these structurally distinct mechanisms and discuss how they may lead to differential anti-tumor immune responses. We discuss how T cells specific for neoantigens derived from anchor mutations can be of high affinity and provide insights to their use in adoptive T cell transfer-based immunotherapy.
在癌症中,非同义 DNA 碱基变化改变蛋白质序列,并产生新抗原,这些新抗原被免疫系统检测到。为了被免疫检测,新抗原必须首先在 I 类或 II 类人类白细胞抗原 (HLA) 上呈递,然后由肽特异性受体识别,以 T 细胞受体 (TCR) 为例。由于新抗原与内源性“自身”蛋白高度相似,因此它们对免疫系统的检测构成了独特的挑战。在这里,我们从结构研究中回顾了 TCR 如何检测新抗原的见解,并将其划分为两大类机制:1)识别突变的“自身”肽;2)识别通过锚定残基修饰产生的新型“非自身”肽。虽然突变的“自身”肽仅与现有“自身”表位相差一个氨基酸,但形成锚定残基的突变会产生一个全新的表位,这是免疫系统以前从未识别过的。我们回顾了最近的结构研究,这些研究强调了这些结构上不同的机制,并讨论了它们如何导致不同的抗肿瘤免疫反应。我们讨论了源自锚定突变的新抗原特异性 T 细胞如何具有高亲和力,并为其在基于过继性 T 细胞转移的免疫治疗中的应用提供了见解。