Willemsen Lisa, Chen Hung-Jen, van Roomen Cindy P A A, Griffith Guillermo R, Siebeler Ricky, Neele Annette E, Kroon Jeffrey, Hoeksema Marten A, de Winther Menno P J
Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands.
Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, Netherlands.
Front Cardiovasc Med. 2022 Feb 10;9:829877. doi: 10.3389/fcvm.2022.829877. eCollection 2022.
Macrophages are critical components of atherosclerotic lesions and their pro- and anti-inflammatory responses influence atherogenesis. Type-I interferons (IFNs) are cytokines that play an essential role in antiviral responses and inflammatory activation and have been shown to promote atherosclerosis. Although the impact of type-I IFNs on macrophage foam cell formation is well-documented, the effect of lipid accumulation in monocytes and macrophages on type-I IFN responses remains unknown. Here we examined IFN stimulated (ISG) and non-ISG inflammatory gene expression in mouse and human macrophages that were loaded with acetylated LDL (acLDL), as a model for foam cell formation. We found that acLDL loading in mouse and human macrophages specifically suppressed expression of ISGs and IFN-β secretion, but not other pro-inflammatory genes. The down regulation of ISGs could be rescued by exogenous IFN-β supplementation. Activation of the cholesterol-sensing nuclear liver X receptor (LXR) recapitulated the cholesterol-initiated type-I IFN suppression. Additional analyses of murine and generated foam cells confirmed the suppressed IFN signaling pathways and suggest that this phenotype is mediated down regulation of interferon regulatory factor binding at gene promoters. Finally, RNA-seq analysis of monocytes of familial hypercholesterolemia (FH) patients also showed type-I IFN suppression which was restored by lipid-lowering therapy and not present in monocytes of healthy donors. Taken together, we define type-I IFN suppression as an athero-protective characteristic of foamy macrophages. These data provide new insights into the mechanisms that control inflammatory responses in hyperlipidaemic settings and can support future therapeutic approaches focusing on reprogramming of macrophages to reduce atherosclerotic plaque progression and improve stability.
巨噬细胞是动脉粥样硬化病变的关键组成部分,其促炎和抗炎反应会影响动脉粥样硬化的发生发展。I型干扰素(IFN)是一类在抗病毒反应和炎症激活中起重要作用的细胞因子,已被证明可促进动脉粥样硬化。尽管I型干扰素对巨噬细胞泡沫细胞形成的影响已有充分记录,但单核细胞和巨噬细胞中的脂质积累对I型干扰素反应的影响仍不清楚。在这里,我们以泡沫细胞形成为模型,研究了加载乙酰化低密度脂蛋白(acLDL)的小鼠和人类巨噬细胞中干扰素刺激(ISG)和非ISG炎症基因的表达。我们发现,在小鼠和人类巨噬细胞中加载acLDL会特异性抑制ISG的表达和IFN-β的分泌,但不会影响其他促炎基因。补充外源性IFN-β可以挽救ISG的下调。胆固醇感应核肝X受体(LXR)的激活重现了胆固醇引发的I型干扰素抑制作用。对小鼠和人类产生的泡沫细胞的进一步分析证实了干扰素信号通路的抑制,并表明这种表型是由基因启动子处干扰素调节因子结合的下调介导的。最后,对家族性高胆固醇血症(FH)患者单核细胞的RNA测序分析也显示出I型干扰素的抑制,这种抑制通过降脂治疗得以恢复,而健康供体的单核细胞中不存在这种抑制。综上所述,我们将I型干扰素抑制定义为泡沫状巨噬细胞的一种抗动脉粥样硬化特征。这些数据为高脂血症环境中控制炎症反应的机制提供了新的见解,并可为未来旨在重新编程巨噬细胞以减少动脉粥样硬化斑块进展和提高稳定性的治疗方法提供支持。