文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

杂交细胞膜功能化仿生纳米粒子用于骨肉瘤的靶向治疗。

Hybrid Cell Membrane-Functionalized Biomimetic Nanoparticles for Targeted Therapy of Osteosarcoma.

机构信息

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.

Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, People's Republic of China.

出版信息

Int J Nanomedicine. 2022 Feb 22;17:837-854. doi: 10.2147/IJN.S346685. eCollection 2022.


DOI:10.2147/IJN.S346685
PMID:35228800
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8881933/
Abstract

PURPOSE: In order to prepare a biomimetic nano-carrier which has inflammatory chemotaxis, homologous targeting and reduce immune clearance, for targeted chemotherapy of osteosarcoma, we fabricated the paclitaxel-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles coated with 143B-RAW hybrid membrane (PTX-PLGA@[143B-RAW] NPs) and evaluate its anti-cancer efficacy in vitro and vivo. METHODS: PTX-PLGA@[143B-RAW] NPs were prepared by the ultrasonic method and were characterized by size, zeta potential, polymer dispersion index (PDI), Coomassie bright blue staining, transmission electron microscopy (TEM) and high performance liquid chromatography (HPLC). Cellular uptake, cell viability assay, flow cytometry and chemotactic effect of PTX-PLGA@[143B-RAW] NPs were evaluated in vitro. Biodistribution, anti-cancer therapeutic efficacy and safety of PTX-PLGA@[143B-RAW] NPs were evaluated in 143B osteosarcoma xenograft mice. RESULTS: The hybrid membrane successfully coated onto the surface of PLGA nanoparticles. PTX-PLGA@[143B-RAW] NPs had a drug loading capacity of 4.24 ± 0.02% and showed targeting ability to osteosarcoma. PTX-PLGA@[143B-RAW] NPs showed high cellular uptake and improved anti-cancer efficacy against 143B cells. More importantly, PTX-PLGA@[143B-RAW] NPs treatment suppressed tumor growth in tumor-bearing mice with minimal damage to normal tissues. CONCLUSION: PTX-PLGA@[143B-RAW] NPs could be used for targeted drug delivery and osteosarcoma therapy.

摘要

目的:为了制备具有炎症趋化性、同源靶向和减少免疫清除的仿生纳米载体,用于骨肉瘤的靶向化疗,我们制备了载紫杉醇的聚乳酸-羟基乙酸共聚物(PLGA)纳米粒,并用 143B-RAW 杂交膜包被(PTX-PLGA@[143B-RAW] NPs),并评价其在体外和体内的抗癌疗效。

方法:采用超声法制备 PTX-PLGA@[143B-RAW] NPs,通过粒径、Zeta 电位、聚合物分散指数(PDI)、考马斯亮蓝染色、透射电子显微镜(TEM)和高效液相色谱(HPLC)进行表征。评价 PTX-PLGA@[143B-RAW] NPs 的细胞摄取、细胞活力测定、流式细胞术和趋化作用。在 143B 骨肉瘤异种移植小鼠中评价 PTX-PLGA@[143B-RAW] NPs 的体内分布、抗癌疗效和安全性。

结果:杂交膜成功地包被在 PLGA 纳米粒表面。PTX-PLGA@[143B-RAW] NPs 的载药量为 4.24±0.02%,对骨肉瘤具有靶向能力。PTX-PLGA@[143B-RAW] NPs 具有较高的细胞摄取率,能提高对 143B 细胞的抗癌疗效。更重要的是,PTX-PLGA@[143B-RAW] NPs 治疗能抑制荷瘤小鼠肿瘤生长,对正常组织损伤最小。

结论:PTX-PLGA@[143B-RAW] NPs 可用于靶向药物递送和骨肉瘤治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/f5d350912ea2/IJN-17-837-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/965dfc488c63/IJN-17-837-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/f0829d7c154e/IJN-17-837-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/252100845367/IJN-17-837-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/c85ddb1b15ac/IJN-17-837-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/e1115fce977d/IJN-17-837-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/dc65c45da013/IJN-17-837-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/777d2c27000a/IJN-17-837-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/f5d350912ea2/IJN-17-837-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/965dfc488c63/IJN-17-837-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/f0829d7c154e/IJN-17-837-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/252100845367/IJN-17-837-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/c85ddb1b15ac/IJN-17-837-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/e1115fce977d/IJN-17-837-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/dc65c45da013/IJN-17-837-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/777d2c27000a/IJN-17-837-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81af/8881933/f5d350912ea2/IJN-17-837-g0008.jpg

相似文献

[1]
Hybrid Cell Membrane-Functionalized Biomimetic Nanoparticles for Targeted Therapy of Osteosarcoma.

Int J Nanomedicine. 2022

[2]
Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid).

Int J Nanomedicine. 2013-11-7

[3]
Magnetic targeting of paclitaxel-loaded poly(lactic--glycolic acid)-based nanoparticles for the treatment of glioblastoma.

Int J Nanomedicine. 2018-8-8

[4]
Folate-receptor-targeted laser-activable poly(lactide--glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy.

Int J Nanomedicine. 2018-9-6

[5]
Mesenchymal stem cells loaded with paclitaxel-poly(lactic--glycolic acid) nanoparticles for glioma-targeting therapy.

Int J Nanomedicine. 2018-9-7

[6]
Enhanced in vitro antiproliferative effects of EpCAM antibody-functionalized paclitaxel-loaded PLGA nanoparticles in retinoblastoma cells.

Mol Vis. 2011

[7]
Cancer cell membrane-camouflaged paclitaxel/PLGA nanoparticles for targeted therapy against lung cancer.

Biomed Pharmacother. 2024-8

[8]
Novel Nano-Therapeutic Approach Actively Targets Human Ovarian Cancer Stem Cells after Xenograft into Nude Mice.

Int J Mol Sci. 2017-4-12

[9]
Intranasal delivery of Paclitaxel encapsulated nanoparticles for brain injury due to Glioblastoma.

J Appl Biomater Funct Mater. 2020

[10]
Stimuli-responsive magnetic silica-poly-lactic-co-glycolic acid hybrid nanoparticles for targeted cancer chemo-immunotherapy.

Drug Deliv Transl Res. 2024-10

引用本文的文献

[1]
Advances in Nanotechnology Research in Food Production, Nutrition, and Health.

Nutrients. 2025-7-26

[2]
Material-Driven Therapeutics: Functional Nanomaterial Design Paradigms Revolutionizing Osteosarcoma Treatment.

J Funct Biomater. 2025-6-5

[3]
Bioinspired nanomedicines for the management of osteosarcoma: Recent progress and perspectives.

Mater Today Bio. 2025-3-5

[4]
Production of Prophylactic Nanoformulation for Dental Caries and Investigation of Its Effectiveness by In Vitro and In Silico Methods.

Pharmaceutics. 2025-1-27

[5]
Homologous-adhering/targeting cell membrane- and cell-mediated delivery systems: a cancer-catch-cancer strategy in cancer therapy.

Regen Biomater. 2024-11-21

[6]
Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment.

Mol Cancer. 2024-11-1

[7]
Biomimetic siRNA nanogels for regulating macrophage polarization and promoting osteogenesis.

Heliyon. 2024-9-24

[8]
Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[9]
Advances in cell membrane-based biomimetic nanodelivery systems for natural products.

Drug Deliv. 2024-12

[10]
Cell Membrane-Coated Biomimetic Nanoparticles in Cancer Treatment.

Pharmaceutics. 2024-4-12

本文引用的文献

[1]
The role of tumor-associated macrophages in osteosarcoma progression - therapeutic implications.

Cell Oncol (Dordr). 2021-6

[2]
NANOG Decoy Oligodeoxynucleotide-Encapsulated Niosomes Nanocarriers: A Promising Approach to Suppress the Metastatic Properties of U87 Human Glioblastoma Multiforme Cells.

ACS Chem Neurosci. 2020-12-16

[3]
Role of microRNAs in the crosstalk between osteosarcoma cells and the tumour microenvironment.

J Bone Oncol. 2020-9-28

[4]
Engineering Macrophages for Cancer Immunotherapy and Drug Delivery.

Adv Mater. 2020-10

[5]
Bone health in cancer: ESMO Clinical Practice Guidelines.

Ann Oncol. 2020-12

[6]
Hybrid of niosomes and bio-synthesized selenium nanoparticles as a novel approach in drug delivery for cancer treatment.

Mol Biol Rep. 2020-9

[7]
Biomimetic hybrid membrane-based nanoplatforms: synthesis, properties and biomedical applications.

Nanoscale Horiz. 2020-9-1

[8]
Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity.

Biomaterials. 2020-10

[9]
Recent advances of drug delivery nanocarriers in osteosarcoma treatment.

J Cancer. 2020-1-1

[10]
Cancer Cell Membrane-Coated Nanoparticles for Cancer Management.

Cancers (Basel). 2019-11-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索