Suppr超能文献

通过地理视觉分析探索运动描述

Exploring Descriptions of Movement Through Geovisual Analytics.

作者信息

Pezanowski Scott, Mitra Prasenjit, MacEachren Alan M

机构信息

Information Sciences and Technology, The Pennsylvania State University, Westgate Building, University Park, PA 16802 USA.

Department of Geography, The Pennsylvania State University, Walker Building, University Park, PA 16802 USA.

出版信息

KN J Cartogr Geogr Inf. 2022;72(1):5-27. doi: 10.1007/s42489-022-00098-3. Epub 2022 Feb 24.

Abstract

UNLABELLED

Sensemaking using automatically extracted information from text is a challenging problem. In this paper, we address a specific type of information extraction, namely extracting information related to descriptions of movement. Aggregating and understanding information related to descriptions of movement and lack of movement specified in text can lead to an improved understanding and sensemaking of movement phenomena of various types, e.g., migration of people and animals, impediments to travel due to COVID-19, etc. We present GeoMovement, a system that is based on combining machine learning and rule-based extraction of movement-related information with state-of-the-art visualization techniques. Along with the depiction of movement, our tool can extract and present a lack of movement. Very little prior work exists on automatically extracting descriptions of movement, especially negation and movement. Apart from addressing these, GeoMovement also provides a novel integrated framework for combining these extraction modules with visualization. We include two systematic case studies of GeoMovement that show how humans can derive meaningful geographic movement information. GeoMovement can complement precise movement data, e.g., obtained using sensors, or be used by itself when precise data is unavailable.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s42489-022-00098-3.

摘要

未标注

利用从文本中自动提取的信息进行意义建构是一个具有挑战性的问题。在本文中,我们解决了一种特定类型的信息提取问题,即提取与运动描述相关的信息。汇总并理解文本中指定的与运动描述和缺乏运动相关的信息,可以增进对各种类型运动现象的理解和意义建构,例如人和动物的迁移、因新冠疫情导致的出行障碍等。我们展示了GeoMovement,这是一个基于将机器学习和基于规则的运动相关信息提取与最先进的可视化技术相结合的系统。除了描绘运动,我们的工具还可以提取并呈现缺乏运动的情况。关于自动提取运动描述,尤其是否定和运动方面,之前的相关工作非常少。除了解决这些问题,GeoMovement还提供了一个新颖的集成框架,用于将这些提取模块与可视化相结合。我们纳入了两个关于GeoMovement的系统案例研究,展示了人类如何从中得出有意义的地理运动信息。GeoMovement可以补充精确的运动数据,例如通过传感器获得的数据,或者在无法获得精确数据时单独使用。

补充信息

在线版本包含可在10.1007/s42489-022-00098-3获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15c/8866112/d7626427fb76/42489_2022_98_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验