Zare Iman, Yaraki Mohammad Tavakkoli, Speranza Giorgio, Najafabadi Alireza Hassani, Shourangiz-Haghighi Alireza, Nik Amirala Bakhshian, Manshian Bella B, Saraiva Cláudia, Soenen Stefaan J, Kogan Marcelo J, Lee Jee Woong, Apollo Nicholas V, Bernardino Liliana, Araya Eyleen, Mayer Dirk, Mao Guangzhao, Hamblin Michael R
Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran.
School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
Chem Soc Rev. 2022 Apr 4;51(7):2601-2680. doi: 10.1039/d1cs01111a.
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both and experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
技术的最新进展有望增进我们目前对神经科学的理解。纳米技术和纳米材料能够在体内和体外实验装置中改变并控制神经功能。神经科学与纳米科学的交叉领域可能会产生在分子水平上适配的长期神经接口。由于其固有的物理化学特性,金纳米结构(GNSs)在神经科学领域备受关注,尤其是用于联合诊断与治疗(诊疗一体化)目的。GNSs已成功用于刺激和监测神经生理信号。因此,GNSs可为神经组织的再生与恢复、新型神经保护策略以及集成可植入材料提供一个有前景的解决方案。本综述涵盖了基于GNSs的材料在广泛神经学应用方面的内容,以改善临床诊断和治疗。子主题包括神经毒性、治疗药物向中枢神经系统(CNS)的靶向递送、神经化学传感、神经调节、神经成像、神经治疗、组织工程和神经再生。它聚焦于GNSs在神经学中的核心概念,以规避神经生物学和神经化学(包括诊疗一体化)创新方法的局限性和重大障碍。我们将讨论使用GNSs克服当前瓶颈以及应对技术和概念挑战方面的最新进展。