Lee-Rueckert Miriam, Lappalainen Jani, Kovanen Petri T, Escola-Gil Joan Carles
Wihuri Research Institute, Helsinki, Finland.
Institut d'Investigacions Biomèdiques (IIB) Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
Front Cardiovasc Med. 2022 Feb 14;9:777822. doi: 10.3389/fcvm.2022.777822. eCollection 2022.
Atherosclerotic arterial plaques and malignant solid tumors contain macrophages, which participate in anaerobic metabolism, acidosis, and inflammatory processes inherent in the development of either disease. The tissue-resident macrophage populations originate from precursor cells derived from the yolk sac and from circulating bone marrow-derived monocytes. In the tissues, they differentiate into varying functional phenotypes in response to local microenvironmental stimulation. Broadly categorized, the macrophages are activated to polarize into proinflammatory M1 and anti-inflammatory M2 phenotypes; yet, noticeable plasticity allows them to dynamically shift between several distinct functional subtypes. In atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates within macrophages as cytoplasmic lipid droplets thereby generating macrophage foam cells, which are involved in all steps of atherosclerosis. The conversion of macrophages into foam cells may suppress the expression of given proinflammatory genes and thereby initiate their transcriptional reprogramming toward an anti-inflammatory phenotype. In this particular sense, foam cell formation can be considered anti-atherogenic. The tumor-associated macrophages (TAMs) may become polarized into anti-tumoral M1 and pro-tumoral M2 phenotypes. Mechanistically, the TAMs can regulate the survival and proliferation of the surrounding cancer cells and participate in various aspects of tumor formation, progression, and metastasis. The TAMs may accumulate lipids, but their type and their specific roles in tumorigenesis are still poorly understood. Here, we discuss how the phenotypic and functional plasticity of macrophages allows their multifunctional response to the distinct microenvironments in developing atherosclerotic lesions and in developing malignant tumors. We also discuss how the inflammatory reactions of the macrophages may influence the development of atherosclerotic plaques and malignant tumors, and highlight the potential therapeutic effects of targeting lipid-laden macrophages in either disease.
动脉粥样硬化斑块和恶性实体瘤中都含有巨噬细胞,它们参与两种疾病发展过程中固有的无氧代谢、酸中毒和炎症过程。组织驻留巨噬细胞群体起源于卵黄囊衍生的前体细胞和循环的骨髓来源单核细胞。在组织中,它们会根据局部微环境刺激分化为不同的功能表型。大致分类,巨噬细胞被激活后极化成为促炎性M1和抗炎性M2表型;然而,显著的可塑性使它们能够在几种不同的功能亚型之间动态转换。在动脉粥样硬化中,低密度脂蛋白(LDL)衍生的胆固醇以细胞质脂滴的形式在巨噬细胞内积累,从而产生巨噬细胞泡沫细胞,其参与动脉粥样硬化的各个阶段。巨噬细胞向泡沫细胞的转化可能会抑制特定促炎基因的表达,从而启动其向抗炎表型的转录重编程。从这个特定意义上讲,泡沫细胞的形成可被视为抗动脉粥样硬化的。肿瘤相关巨噬细胞(TAM)可能会极化为抗肿瘤的M1和促肿瘤的M2表型。从机制上讲,TAM可以调节周围癌细胞的存活和增殖,并参与肿瘤形成、进展和转移的各个方面。TAM可能会积累脂质,但其类型及其在肿瘤发生中的具体作用仍知之甚少。在这里,我们讨论巨噬细胞的表型和功能可塑性如何使其对动脉粥样硬化病变和恶性肿瘤发生过程中不同的微环境产生多功能反应。我们还讨论巨噬细胞的炎症反应如何影响动脉粥样硬化斑块和恶性肿瘤的发展,并强调针对这两种疾病中富含脂质的巨噬细胞的潜在治疗效果。