Rights Lab, University of Nottingham, Nottingham, NG7 2RD United Kingdom.
School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD United Kingdom.
Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2118425119. doi: 10.1073/pnas.2118425119. Epub 2022 Mar 1.
SignificanceMathematical models of infectious disease transmission continue to play a vital role in understanding, mitigating, and preventing outbreaks. The vast majority of epidemic models in the literature are parametric, meaning that they contain inherent assumptions about how transmission occurs in a population. However, such assumptions can be lacking in appropriate biological or epidemiological justification and in consequence lead to erroneous scientific conclusions and misleading predictions. We propose a flexible Bayesian nonparametric framework that avoids the need to make strict model assumptions about the infection process and enables a far more data-driven modeling approach for inferring the mechanisms governing transmission. We use our methods to enhance our understanding of the transmission mechanisms of the 2001 UK foot and mouth disease outbreak.
意义
传染病传播的数学模型在理解、减轻和预防疫情方面继续发挥着至关重要的作用。文献中的绝大多数传染病模型都是参数化的,这意味着它们对人群中传播的方式存在内在假设。然而,这些假设可能缺乏适当的生物学或流行病学依据,因此会导致错误的科学结论和误导性预测。我们提出了一种灵活的贝叶斯非参数框架,可以避免对感染过程做出严格的模型假设,并为推断控制传播的机制提供一种更具数据驱动的建模方法。我们使用我们的方法来增强我们对 2001 年英国口蹄疫爆发传播机制的理解。