Cook Alex R, Otten Wilfred, Marion Glenn, Gibson Gavin J, Gilligan Christopher A
Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20392-7. doi: 10.1073/pnas.0706461104. Epub 2007 Dec 11.
One of the principal challenges in epidemiological modeling is to parameterize models with realistic estimates for transmission rates in order to analyze strategies for control and to predict disease outcomes. Using a combination of replicated experiments, Bayesian statistical inference, and stochastic modeling, we introduce and illustrate a strategy to estimate transmission parameters for the spread of infection through a two-phase mosaic, comprising favorable and unfavorable hosts. We focus on epidemics with local dispersal and formulate a spatially explicit, stochastic set of transition probabilities using a percolation paradigm for a susceptible-infected (S-I) epidemiological model. The S-I percolation model is further generalized to allow for multiple sources of infection including external inoculum and host-to-host infection. We fit the model using Bayesian inference and Markov chain Monte Carlo simulation to successive snapshots of damping-off disease spreading through replicated plant populations that differ in relative proportions of favorable and unfavorable hosts and with time-varying rates of transmission. Epidemiologically plausible parametric forms for these transmission rates are compared by using the deviance information criterion. Our results show that there are four transmission rates for a two-phase system, corresponding to each combination of infected donor and susceptible recipient. Knowing the number and magnitudes of the transmission rates allows the dominant pathways for transmission in a heterogeneous population to be identified. Finally, we show how failure to allow for multiple transmission rates can overestimate or underestimate the rate of spread of epidemics in heterogeneous environments, which could lead to marked failure or inefficiency of control strategies.
流行病学建模的主要挑战之一是用对传播率的实际估计值来参数化模型,以便分析控制策略并预测疾病结果。通过结合重复实验、贝叶斯统计推断和随机建模,我们引入并阐述了一种策略,用于估计感染在由有利宿主和不利宿主组成的两阶段镶嵌体中传播的传播参数。我们关注具有局部扩散的流行病,并使用易感-感染(S-I)流行病学模型的渗流范式,制定了一组空间明确的随机转移概率。S-I渗流模型进一步推广,以允许包括外部接种物和宿主间感染在内的多种感染源。我们使用贝叶斯推断和马尔可夫链蒙特卡罗模拟,将模型拟合到通过重复的植物种群传播的猝倒病的连续快照上,这些植物种群在有利宿主和不利宿主的相对比例以及随时间变化的传播率方面存在差异。通过使用偏差信息准则,比较了这些传播率在流行病学上合理的参数形式。我们的结果表明,对于两阶段系统有四种传播率,对应于感染供体和易感受体的每种组合。了解传播率的数量和大小可以确定异质种群中的主要传播途径。最后,我们展示了不考虑多种传播率如何高估或低估异质环境中流行病的传播速度,这可能导致控制策略明显失败或效率低下。