Suppr超能文献

异质人群中流行病的多种传播率估计。

Estimation of multiple transmission rates for epidemics in heterogeneous populations.

作者信息

Cook Alex R, Otten Wilfred, Marion Glenn, Gibson Gavin J, Gilligan Christopher A

机构信息

Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20392-7. doi: 10.1073/pnas.0706461104. Epub 2007 Dec 11.

Abstract

One of the principal challenges in epidemiological modeling is to parameterize models with realistic estimates for transmission rates in order to analyze strategies for control and to predict disease outcomes. Using a combination of replicated experiments, Bayesian statistical inference, and stochastic modeling, we introduce and illustrate a strategy to estimate transmission parameters for the spread of infection through a two-phase mosaic, comprising favorable and unfavorable hosts. We focus on epidemics with local dispersal and formulate a spatially explicit, stochastic set of transition probabilities using a percolation paradigm for a susceptible-infected (S-I) epidemiological model. The S-I percolation model is further generalized to allow for multiple sources of infection including external inoculum and host-to-host infection. We fit the model using Bayesian inference and Markov chain Monte Carlo simulation to successive snapshots of damping-off disease spreading through replicated plant populations that differ in relative proportions of favorable and unfavorable hosts and with time-varying rates of transmission. Epidemiologically plausible parametric forms for these transmission rates are compared by using the deviance information criterion. Our results show that there are four transmission rates for a two-phase system, corresponding to each combination of infected donor and susceptible recipient. Knowing the number and magnitudes of the transmission rates allows the dominant pathways for transmission in a heterogeneous population to be identified. Finally, we show how failure to allow for multiple transmission rates can overestimate or underestimate the rate of spread of epidemics in heterogeneous environments, which could lead to marked failure or inefficiency of control strategies.

摘要

流行病学建模的主要挑战之一是用对传播率的实际估计值来参数化模型,以便分析控制策略并预测疾病结果。通过结合重复实验、贝叶斯统计推断和随机建模,我们引入并阐述了一种策略,用于估计感染在由有利宿主和不利宿主组成的两阶段镶嵌体中传播的传播参数。我们关注具有局部扩散的流行病,并使用易感-感染(S-I)流行病学模型的渗流范式,制定了一组空间明确的随机转移概率。S-I渗流模型进一步推广,以允许包括外部接种物和宿主间感染在内的多种感染源。我们使用贝叶斯推断和马尔可夫链蒙特卡罗模拟,将模型拟合到通过重复的植物种群传播的猝倒病的连续快照上,这些植物种群在有利宿主和不利宿主的相对比例以及随时间变化的传播率方面存在差异。通过使用偏差信息准则,比较了这些传播率在流行病学上合理的参数形式。我们的结果表明,对于两阶段系统有四种传播率,对应于感染供体和易感受体的每种组合。了解传播率的数量和大小可以确定异质种群中的主要传播途径。最后,我们展示了不考虑多种传播率如何高估或低估异质环境中流行病的传播速度,这可能导致控制策略明显失败或效率低下。

相似文献

1
Estimation of multiple transmission rates for epidemics in heterogeneous populations.异质人群中流行病的多种传播率估计。
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20392-7. doi: 10.1073/pnas.0706461104. Epub 2007 Dec 11.
2
Bayesian model choice for epidemic models with two levels of mixing.两层混合的传染病模型的贝叶斯模型选择。
Biostatistics. 2014 Jan;15(1):46-59. doi: 10.1093/biostatistics/kxt023. Epub 2013 Jul 24.
3
Probability of a disease outbreak in stochastic multipatch epidemic models.随机多斑块传染病模型中的疾病爆发概率。
Bull Math Biol. 2013 Jul;75(7):1157-80. doi: 10.1007/s11538-013-9848-z. Epub 2013 May 11.
10

引用本文的文献

1
Bayesian nonparametric inference for heterogeneously mixing infectious disease models.贝叶斯非参数推断在异质混合传染病模型中的应用。
Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2118425119. doi: 10.1073/pnas.2118425119. Epub 2022 Mar 1.
4
Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape.在斑块状景观中估计蚜虫传播病毒的扩散距离。
PLoS Comput Biol. 2018 Apr 30;14(4):e1006085. doi: 10.1371/journal.pcbi.1006085. eCollection 2018 Apr.
6
Approximate Bayesian computation for spatial SEIR(S) epidemic models.空间SEIR(S)流行病模型的近似贝叶斯计算
Spat Spatiotemporal Epidemiol. 2018 Feb;24:27-37. doi: 10.1016/j.sste.2017.11.001. Epub 2017 Nov 22.
9
A Systematic Bayesian Integration of Epidemiological and Genetic Data.流行病学与基因数据的系统贝叶斯整合
PLoS Comput Biol. 2015 Nov 23;11(11):e1004633. doi: 10.1371/journal.pcbi.1004633. eCollection 2015 Nov.
10
Determinants of the Final Size and Case Rate of Nosocomial Outbreaks.医院感染暴发最终规模和发病率的决定因素。
PLoS One. 2015 Sep 15;10(9):e0138216. doi: 10.1371/journal.pone.0138216. eCollection 2015.

本文引用的文献

1
Epidemiology in mixed host populations.混合宿主群体中的流行病学。
Phytopathology. 1999 Nov;89(11):984-90. doi: 10.1094/PHYTO.1999.89.11.984.
4
Bayesian inference for the spatio-temporal invasion of alien species.外来物种时空入侵的贝叶斯推断
Bull Math Biol. 2007 Aug;69(6):2005-25. doi: 10.1007/s11538-007-9202-4. Epub 2007 Apr 25.
7
HIV/AIDS in women: an expanding epidemic.女性中的艾滋病毒/艾滋病:疫情不断蔓延。
Science. 2005 Jun 10;308(5728):1582-3. doi: 10.1126/science.1112489.
8
Bayesian analysis of botanical epidemics using stochastic compartmental models.使用随机分区模型对植物疫情进行贝叶斯分析。
Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12120-4. doi: 10.1073/pnas.0400829101. Epub 2004 Aug 9.
9
Using conservation of pattern to estimate spatial parameters from a single snapshot.利用模式守恒从单个快照估计空间参数。
Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):9155-60. doi: 10.1073/pnas.0400335101. Epub 2004 Jun 7.
10
Inference for an epidemic when susceptibility varies.易感性变化时的疫情推断。
Biostatistics. 2001 Mar;2(1):99-108. doi: 10.1093/biostatistics/2.1.99.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验