Suppr超能文献

基于双编码器-单解码器的低剂量 CT 去噪网络。

A Dual-Encoder-Single-Decoder Based Low-Dose CT Denoising Network.

出版信息

IEEE J Biomed Health Inform. 2022 Jul;26(7):3251-3260. doi: 10.1109/JBHI.2022.3155788. Epub 2022 Jul 1.

Abstract

Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic information such as organization structure. To improve the network's ability to categorically deal with different kinds of information, this paper proposes a new type of GAN with dual-encoder- single-decoder structure. In the structure of the generator, firstly, a pyramid non-local attention module in the main encoder channel is designed to improve the feature extraction effectiveness by enhancing the features with self-similarity; Secondly, another encoder with shallow feature processing module and deep feature processing module is proposed to improve the encoding capabilities of the generator; Finally, the final denoised CT image is generated by fusing main encoder's features, shallow visual features, and deep semantic features. The quality of the generated images is improved due to the use of feature complementation in the generator. In order to improve the adversarial training ability of discriminator, a hierarchical-split ResNet structure is proposed, which improves the feature's richness and reduces the feature's redundancy in discriminator. The experimental results show that compared with the traditional single-encoder- single-decoder based GAN, the proposed method performs better in both image quality and medical diagnostic acceptability. Code is available in https://github.com/hanzefang/DESDGAN.

摘要

生成对抗网络(GAN)在低剂量 CT(LDCT)图像质量改善方面显示出巨大的潜力。一般来说,生成器的浅层特征包括更多的浅层视觉信息,如边缘和纹理,而生成器的深层特征包含更多的深层语义信息,如组织结构。为了提高网络对不同种类信息的分类处理能力,本文提出了一种具有双编码器-单解码器结构的新型 GAN。在生成器的结构中,首先,在主编码器通道中设计了一个金字塔非局部注意力模块,通过增强具有自相似性的特征来提高特征提取的有效性;其次,提出了另一个具有浅层特征处理模块和深层特征处理模块的编码器,以提高生成器的编码能力;最后,通过融合主编码器的特征、浅层视觉特征和深层语义特征,生成最终的去噪 CT 图像。由于在生成器中使用了特征互补,生成的图像质量得到了提高。为了提高鉴别器的对抗训练能力,提出了一种分层分割 ResNet 结构,提高了鉴别器中特征的丰富度,减少了特征的冗余度。实验结果表明,与传统的基于单编码器-单解码器的 GAN 相比,该方法在图像质量和医学诊断可接受性方面都有更好的表现。代码可在 https://github.com/hanzefang/DESDGAN 上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验