Suppr超能文献

使用机器学习和电子舌区分口腔癌患者和健康个体的唾液样本。

Using machine learning and an electronic tongue for discriminating saliva samples from oral cavity cancer patients and healthy individuals.

机构信息

Mato Grosso do Sul State University (UEMS), 79804-970, Dourados, MS, Brazil; São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13566-590, São Carlos, SP, Brazil.

Federal Institute of São Paulo (IFSP), 14804-296, Araraquara, SP, Brazil; Institute of Mathematics and Computer Sciences (ICMC), University of São Paulo (USP), 13566-590, São Carlos, SP, Brazil.

出版信息

Talanta. 2022 Jun 1;243:123327. doi: 10.1016/j.talanta.2022.123327. Epub 2022 Feb 22.

Abstract

The diagnosis of cancer and other diseases using data from non-specific sensors - such as the electronic tongues (e-tongues) - is challenging owing to the lack of selectivity, in addition to the variability of biological samples. In this study, we demonstrate that impedance data obtained with an e-tongue in saliva samples can be used to diagnose cancer in the mouth. Data taken with a single-response microfluidic e-tongue applied to the saliva of 27 individuals were treated with multidimensional projection techniques and non-supervised and supervised machine learning algorithms. The distinction between healthy individuals and patients with cancer on the floor of mouth or oral cavity could only be made with supervised learning. Accuracy above 80% was obtained for the binary classification (YES or NO for cancer) using a Support Vector Machine (SVM) with radial basis function kernel and Random Forest. In the classification considering the type of cancer, the accuracy dropped to ca. 70%. The accuracy tended to increase when clinical information such as alcohol consumption was used in conjunction with the e-tongue data. With the random forest algorithm, the rules to explain the diagnosis could be identified using the concept of Multidimensional Calibration Space. Since the training of the machine learning algorithms is believed to be more efficient when the data of a larger number of patients are employed, the approach presented here is promising for computer-assisted diagnosis.

摘要

利用非特异性传感器(如电子舌)从数据中诊断癌症和其他疾病具有挑战性,这是由于缺乏选择性,此外生物样本的可变性也是一个挑战。在这项研究中,我们证明了通过电子舌在唾液样本中获得的阻抗数据可用于诊断口腔中的癌症。使用单响应微流控电子舌在 27 个人的唾液中采集的数据,通过多维投影技术和无监督和监督机器学习算法进行了处理。仅通过监督学习才能区分口腔底部或口腔中健康个体和癌症患者。使用具有径向基函数核的支持向量机(SVM)和随机森林,对于二元分类(癌症为是或否),准确率超过 80%。在考虑癌症类型的分类中,准确率下降到约 70%。当将临床信息(如饮酒)与电子舌数据结合使用时,准确性趋于增加。使用随机森林算法,可以使用多维校准空间的概念来识别用于解释诊断的规则。由于当使用更多患者的数据进行机器学习算法的训练时,其被认为更有效,因此这里提出的方法对于计算机辅助诊断很有前途。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验