Suppr超能文献

哺乳动物睡眠中纺锤波振荡的一种设计原理。

A design principle of spindle oscillations in mammalian sleep.

作者信息

Yamada Tetsuya, Shi Shoi, Ueda Hiroki R

机构信息

Faculty of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan.

Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan.

出版信息

iScience. 2022 Feb 5;25(3):103873. doi: 10.1016/j.isci.2022.103873. eCollection 2022 Mar 18.

Abstract

Neural oscillations are mainly regulated by molecular mechanisms and network connectivity of neurons. Large-scale simulations of neuronal networks have driven the population-level understanding of neural oscillations. However, cell-intrinsic mechanisms, especially a design principle, of neural oscillations remain largely elusive. Herein, we developed a minimal, Hodgkin-Huxley-type model of groups of neurons to investigate molecular mechanisms underlying spindle oscillation, which is synchronized oscillatory activity predominantly observed during mammalian sleep. We discovered that slowly inactivating potassium channels played an essential role in characterizing the firing pattern. The detailed analysis of the minimal model revealed that leak sodium and potassium channels, which controlled passive properties of the fast variable (i.e., membrane potential), competitively regulated the base value and time constant of the slow variable (i.e., cytosolic calcium concentration). Consequently, we propose a theoretical design principle of spindle oscillations that may explain intracellular mechanisms behind the flexible control over oscillation density and calcium setpoint.

摘要

神经振荡主要受神经元的分子机制和网络连接性调控。神经元网络的大规模模拟推动了对神经振荡的群体水平理解。然而,神经振荡的细胞内在机制,尤其是一种设计原理,在很大程度上仍然难以捉摸。在此,我们开发了一种最小化的霍奇金 - 赫胥黎型神经元群体模型,以研究纺锤体振荡背后的分子机制,纺锤体振荡是在哺乳动物睡眠期间主要观察到的同步振荡活动。我们发现缓慢失活的钾通道在表征放电模式中起关键作用。对最小模型的详细分析表明,控制快速变量(即膜电位)被动特性的泄漏钠通道和钾通道竞争性地调节慢速变量(即胞质钙浓度)的基值和时间常数。因此,我们提出了一种纺锤体振荡的理论设计原理,该原理可能解释对振荡密度和钙设定点进行灵活控制背后的细胞内机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a9/8861656/ab2ad4d12c7e/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验