Berrang-Ford Lea, Sietsma Anne J, Callaghan Max, Minx Ja C, Scheelbeek Pauline, Haddaway Neal R, Haines Andy, Belesova Kristine, Dangour Alan D
Priestley International Centre for Climate, University of Leeds, Leeds, LS2 9JT, UK.
Mercator Research Institute on Global Commons and Climate Change, Torgauer Straße 12-15, EUREF Campus #19, Berlin, 10829, Germany.
Wellcome Open Res. 2021 Jan 20;6:7. doi: 10.12688/wellcomeopenres.16415.1. eCollection 2021.
Climate change is already affecting health in populations around the world, threatening to undermine the past 50 years of global gains in public health. Health is not only affected by climate change via many causal pathways, but also by the emissions that drive climate change and their co-pollutants. Yet there has been relatively limited synthesis of key insights and trends at a global scale across fragmented disciplines. Compounding this, an exponentially increasing literature means that conventional evidence synthesis methods are no longer sufficient or feasible. Here, we outline a protocol using machine learning approaches to systematically synthesize global evidence on the relationship between climate change, climate variability, and weather (CCVW) and human health. We will use supervised machine learning to screen over 300,000 scientific articles, combining terms related to CCVW and human health. Our inclusion criteria comprise articles published between 2013 and 2020 that focus on empirical assessment of: CCVW impacts on human health or health-related outcomes or health systems; relate to the health impacts of mitigation strategies; or focus on adaptation strategies to the health impacts of climate change. We will use supervised machine learning (topic modeling) to categorize included articles as relevant to impacts, mitigation, and/or adaptation, and extract geographical location of studies. Unsupervised machine learning using topic modeling will be used to identify and map key topics in the literature on climate and health, with outputs including evidence heat maps, geographic maps, and narrative synthesis of trends in climate-health publishing. To our knowledge, this will represent the first comprehensive, semi-automated, systematic evidence synthesis of the scientific literature on climate and health.
气候变化已经在影响世界各地人群的健康,有可能破坏过去50年全球在公共卫生方面取得的成果。健康不仅通过多种因果途径受到气候变化的影响,还受到推动气候变化的排放及其协同污染物的影响。然而,在全球范围内,跨碎片化学科的关键见解和趋势的综合相对有限。更糟糕的是,文献数量呈指数级增长,这意味着传统的证据综合方法已不再充分或可行。在此,我们概述了一种使用机器学习方法来系统地综合关于气候变化、气候变率和天气(CCVW)与人类健康之间关系的全球证据的方案。我们将使用监督机器学习筛选超过30万篇科学文章,结合与CCVW和人类健康相关的术语。我们的纳入标准包括2013年至2020年发表的专注于以下实证评估的文章:CCVW对人类健康、健康相关结果或卫生系统的影响;与缓解策略的健康影响相关;或专注于针对气候变化健康影响的适应策略。我们将使用监督机器学习(主题建模)将纳入的文章分类为与影响、缓解和/或适应相关,并提取研究的地理位置。使用主题建模的无监督机器学习将用于识别和绘制气候与健康文献中的关键主题,输出包括证据热图、地理地图以及气候 - 健康出版趋势的叙述性综合。据我们所知,这将是关于气候与健康的科学文献的首次全面、半自动、系统的证据综合。