Zhang Xiao, Liu Wei, Song Fangda, Liu Jin
Centre for Quantitative Medicine Health Services & Systems Research, Duke-NUS Medical School, 169857 Singapore, Singapore.
School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, Guangdong, China.
Bioinform Adv. 2023 Feb 17;3(1):vbad019. doi: 10.1093/bioadv/vbad019. eCollection 2023.
Emerging spatially resolved transcriptomics (SRT) technologies are powerful in measuring gene expression profiles while retaining tissue spatial localization information and typically provide data from multiple tissue sections. We have previously developed the tool SC.MEB-an empirical Bayes approach for SRT data analysis using a hidden Markov random field. Here, we introduce an extension to SC.MEB, denoted as integrated spatial clustering with hidden Markov random field using empirical Bayes (iSC.MEB) that permits the users to simultaneously estimate the batch effect and perform spatial clustering for low-dimensional representations of multiple SRT datasets. We demonstrate that iSC.MEB can provide accurate cell/domain detection results using two SRT datasets.
iSC.MEB is implemented in an open-source R package, and source code is freely available at https://github.com/XiaoZhangryy/iSC.MEB. Documentation and vignettes are provided on our package website (https://xiaozhangryy.github.io/iSC.MEB/index.html).
Supplementary data are available at online.
新兴的空间分辨转录组学(SRT)技术在测量基因表达谱的同时保留组织空间定位信息方面功能强大,并且通常会提供来自多个组织切片的数据。我们之前开发了工具SC.MEB——一种使用隐马尔可夫随机场进行SRT数据分析的经验贝叶斯方法。在此,我们介绍SC.MEB的扩展版本,称为使用经验贝叶斯的隐马尔可夫随机场集成空间聚类(iSC.MEB),它允许用户同时估计批次效应并对多个SRT数据集的低维表示进行空间聚类。我们证明iSC.MEB可以使用两个SRT数据集提供准确的细胞/区域检测结果。
iSC.MEB以开源R包的形式实现,源代码可在https://github.com/XiaoZhangryy/iSC.MEB上免费获取。我们的软件包网站(https://xiaozhangryy.github.io/iSC.MEB/index.html)提供了文档和示例。
补充数据可在网上获取。