Suppr超能文献

基于机器学习算法的自动乳糜泻检测。

Automated detection of celiac disease using Machine Learning Algorithms.

机构信息

Automation Department, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Memorandumului 28, 400014, Cluj-Napoca, Romania.

Faculty of Medicine, Regional Institute of Gastroenterology and Hepatology, Iuliu Hatieganu University of Medicine and Pharmacy, Croitorilor Street 19-21, 400162, Cluj-Napoca, Romania.

出版信息

Sci Rep. 2022 Mar 8;12(1):4071. doi: 10.1038/s41598-022-07199-z.

Abstract

Celiac disease is a disorder of the immune system that mainly affects the small intestine but can also affect the skeletal system. The diagnosis relies on histological assessment of duodenal biopsies acquired by upper digestive endoscopy. Immunological tests involve collecting a blood sample to detect if the antibodies have been produced in the body. Endoscopy is invasive and histology is time-consuming. In recent years there have been various algorithms that use artificial intelligence (AI) and neural convolutions (CNN, Convolutional Neural Network) to process images from capsule endoscopy, a non-invasive endoscopy approach, that provides magnified, high qualitative images of the small bowel mucosa, to quickly establish a diagnosis. The proposed innovative approach do not use complex learning algorithms, instead it find some artefacts in the endoscopies using kernels and use classified machine learning algorithms. Each used artefacts have a psychical meaning: atrophies of the mucosa with a visible submucosal vascular pattern; the presence of cracks (depressions) that have an appearance similar to that of dry land; reduction or complete loss of folds in the duodenum; the presence of a submerged appearance at the Kerckring folds and a low number of villi. The results obtained for video capsule endoscopy images processing reveal an accuracy of 94.1% and F1 score of 94%, which is competitive with other complex algorithms. The main goal of the present research was to demonstrate that computer-aided diagnosis of celiac disease is possible even without the use of very complex algorithms, which require expensive hardware and a lot of processing time. The use of the proposed automated images processing acquired noninvasively by capsule endoscopy would be assistive in detecting the subtle presence of villous atrophy not evident by visual inspection. It may also be useful to assess the degree of improvement of celiac. Patients on a gluten-free diet, the main treatment method for stopping the autoimmune process and improving the state of the small intestinal villi. The novelty of the work is that the algorithm uses two modified filters to properly analyse the intestine wall texture. It is proved that using the right filters, the proper diagnostic can be obtained by image processing, without the use of a complicated machine learning algorithm.

摘要

乳糜泻是一种免疫系统紊乱,主要影响小肠,但也可能影响骨骼系统。该诊断依赖于通过上消化道内窥镜获取的十二指肠活检的组织学评估。免疫测试包括采集血液样本以检测体内是否产生了抗体。内窥镜检查具有侵入性,组织学检查耗时。近年来,已经有各种使用人工智能(AI)和神经卷积(CNN,卷积神经网络)的算法来处理胶囊内窥镜的图像,这是一种非侵入性内窥镜检查方法,可提供放大的高质量小肠黏膜图像,以便快速建立诊断。所提出的创新方法不使用复杂的学习算法,而是使用内核在内窥镜检查中找到一些伪影,并使用分类机器学习算法。每个使用的伪影都有一个物理意义:黏膜萎缩,可见黏膜下血管模式;存在裂缝(凹陷),其外观类似于旱地;十二指肠皱襞减少或完全丧失;Kerckring 皱襞呈淹没外观,绒毛数量减少。对视频胶囊内窥镜图像处理的结果表明,准确率为 94.1%,F1 得分为 94%,与其他复杂算法具有竞争力。本研究的主要目的是证明即使不使用非常复杂的算法,计算机辅助乳糜泻诊断也是可能的,这些算法需要昂贵的硬件和大量的处理时间。通过胶囊内窥镜非侵入性地获得的提议的自动化图像处理的使用将有助于检测到肉眼检查不易发现的绒毛萎缩的微妙存在。它还可能有助于评估乳糜泻的改善程度。患有乳糜泻的患者需要采用无麸质饮食,这是阻止自身免疫过程和改善小肠绒毛状态的主要治疗方法。这项工作的新颖之处在于该算法使用两个修改后的滤波器来正确分析肠壁纹理。事实证明,通过使用正确的滤波器,通过图像处理可以获得适当的诊断,而无需使用复杂的机器学习算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/938a/8904634/ce0cb7a49260/41598_2022_7199_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验