Suppr超能文献

二维金属有机框架Fe(CX)(X = NH、O、S)析氢、析氧和氧还原反应性能的理论研究

Theoretical Investigation on the Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reactions Performances of Two-Dimensional Metal-Organic Frameworks Fe(CX) (X = NH, O, S).

作者信息

Yang Xiaohang, Feng Zhen, Guo Zhanyong

机构信息

School of Science, Henan Institute of Technology, Xinxiang 453000, China.

School of Materials Science and Engineering, Henan Institute of Technology, Xinxiang 453000, China.

出版信息

Molecules. 2022 Feb 24;27(5):1528. doi: 10.3390/molecules27051528.

Abstract

Two-dimensional metal-organic frameworks (2D MOFs) inherently consisting of metal entities and ligands are promising single-atom catalysts (SACs) for electrocatalytic chemical reactions. Three 2D Fe-MOFs with NH, O, and S ligands were designed using density functional theory calculations, and their feasibility as SACs for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) was investigated. The NH, O, and S ligands can be used to control electronic structures and catalysis performance in 2D Fe-MOF monolayers by tuning charge redistribution. The results confirm the Sabatier principle, which states that an ideal catalyst should provide reasonable adsorption energies for all reaction species. The 2D Fe-MOF nanomaterials may render highly-efficient HER, OER, and ORR by tuning the ligands. Therefore, we believe that this study will serve as a guide for developing of 2D MOF-based SACs for water splitting, fuel cells, and metal-air batteries.

摘要

二维金属有机框架材料(2D MOFs)由金属实体和配体组成,是用于电催化化学反应的有前景的单原子催化剂(SACs)。使用密度泛函理论计算设计了三种具有NH、O和S配体的二维铁基金属有机框架材料,并研究了它们作为析氢反应(HER)、析氧反应(OER)和氧还原反应(ORR)单原子催化剂的可行性。NH、O和S配体可通过调节电荷再分布来控制二维铁基金属有机框架单层中的电子结构和催化性能。结果证实了萨巴蒂尔原理,即理想的催化剂应为所有反应物种提供合理的吸附能。二维铁基金属有机框架纳米材料可通过调节配体实现高效的析氢反应、析氧反应和氧还原反应。因此,我们相信这项研究将为开发用于水分解、燃料电池和金属空气电池的二维MOF基单原子催化剂提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e1f/8912093/bbedc68eb6de/molecules-27-01528-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验