文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新兴抗真菌靶点和策略。

Emerging Antifungal Targets and Strategies.

机构信息

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia.

出版信息

Int J Mol Sci. 2022 Mar 2;23(5):2756. doi: 10.3390/ijms23052756.


DOI:10.3390/ijms23052756
PMID:35269898
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8911111/
Abstract

Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.

摘要

尽管在抗真菌药物发现领域进行了大量研究,但真菌感染仍然是一个重大的医疗保健负担。由于现有的抗真菌药物有限,并且不能完全提供安全有效的保护,因此迫切需要开发新型抗真菌药物。由于目前对真菌细胞生理学和感染机制的了解前所未有,我们有机会利用这些知识来开发新一代抗真菌药物。在这篇综述中,我们选择并总结了最近描述不同抗真菌机制的研究。这些机制包括干扰真菌耐药性,包括对抗流泵和热休克蛋白 90 的影响。此外,还研究了干扰毒力因子(如生物膜和菌丝)、影响真菌酶、代谢、线粒体和细胞壁以及抗真菌疫苗的作用。所研究的药物属于不同类别的天然或合成分子,同时也非常关注植物提取物。这些抗真菌药物的疗效主要在体外进行了研究,有些在体内进行了研究,还需要进行临床试验。然而,有大量采用新型抗真菌机制的产品可供进一步探索,以开发新一代抗真菌药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/9291f7fc09a9/ijms-23-02756-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/504da8d40b7a/ijms-23-02756-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/385b75937053/ijms-23-02756-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/5e46be8871f3/ijms-23-02756-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/4ef55376c5d8/ijms-23-02756-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/d9538d25c61d/ijms-23-02756-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/9291f7fc09a9/ijms-23-02756-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/504da8d40b7a/ijms-23-02756-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/385b75937053/ijms-23-02756-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/5e46be8871f3/ijms-23-02756-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/4ef55376c5d8/ijms-23-02756-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/d9538d25c61d/ijms-23-02756-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8911111/9291f7fc09a9/ijms-23-02756-g006.jpg

相似文献

[1]
Emerging Antifungal Targets and Strategies.

Int J Mol Sci. 2022-3-2

[2]
Antifungals discovery: an insight into new strategies to combat antifungal resistance.

Lett Appl Microbiol. 2018-1

[3]
Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings.

Phytomedicine. 2021-7-15

[4]
Antifungals.

Biochem Pharmacol. 2016-11-21

[5]
Antifungal adjuvants: Preserving and extending the antifungal arsenal.

Virulence. 2017-2-17

[6]
A chemical screen identifies structurally diverse metal chelators with activity against the fungal pathogen .

Microbiol Spectr. 2024-4-2

[7]
New and Promising Chemotherapeutics for Emerging Infections Involving Drug-resistant Non-albicans Candida Species.

Curr Top Med Chem. 2019

[8]
The fungal resistome: a risk and an opportunity for the development of novel antifungal therapies.

Future Med Chem. 2016-8

[9]
Mechanisms of Antifungal Drug Resistance.

Cold Spring Harb Perspect Med. 2014-11-10

[10]
Heat shock protein inhibitors for the treatment of fungal infections.

Recent Pat Antiinfect Drug Discov. 2011-1

引用本文的文献

[1]
Label-Free Quantitative Proteomic Analysis Reveals the Effects of Biogenic Silver Nanoparticles on and Their Therapeutic Potential in Larvae.

ACS Omega. 2025-8-14

[2]
Unveiling the antimicrobial, biofilm inhibition, and photoprotective potential of Bupleurum falcatum L. for dermatological applications.

EXCLI J. 2025-7-11

[3]
Overcoming Global Antifungal Challenges: Medical and Agricultural Aspects.

ACS Bio Med Chem Au. 2025-7-2

[4]
subsp. : an assessment of its antifungal, antidiabetic, anti-aging, and neuroprotective potential.

Front Pharmacol. 2025-7-7

[5]
Mitochondrial anchor protein Num11 is key to pathogenicity of by affecting mitochondrial function and cell wall masking.

Virulence. 2025-12

[6]
Clinical Isolate of from a Patient in North Carolina: Identification, Whole-Genome Sequence Analysis, and Anticandidal Activity of .

Open J Med Microbiol. 2025-3

[7]
Inhibitory effect of copper chelators on the budding in .

Antimicrob Agents Chemother. 2025-5-7

[8]
The evolution of antifungal therapy: Traditional agents, current challenges and future perspectives.

Curr Res Microb Sci. 2025-1-11

[9]
Thermosensitive In Situ Ophthalmic Gel for Effective Local Delivery and Antifungal Activity of Ketoconazole Nanoparticles.

Gels. 2024-12-27

[10]
Integration of In Vitro and In Silico Results From Chemical and Biological Assays of and Flower Extracts.

Food Sci Nutr. 2024-12-19

本文引用的文献

[1]
Berberine reverses multidrug resistance in Candida albicans by hijacking the drug efflux pump Mdr1p.

Sci Bull (Beijing). 2021-9-30

[2]
Honokiol and Magnolol: Insights into Their Antidermatophytic Effects.

Plants (Basel). 2021-11-19

[3]
Interesting antifungal drug targets in the central metabolism of Candida albicans.

Trends Pharmacol Sci. 2022-1

[4]
Antifungal Activity of ToAP2D Peptide Against .

Front Bioeng Biotechnol. 2021-10-21

[5]
Construction and activity evaluation of novel benzodioxane derivatives as dual-target antifungal inhibitors.

Eur J Med Chem. 2022-1-5

[6]
Catechol thwarts virulent dimorphism in Candida albicans and potentiates the antifungal efficacy of azoles and polyenes.

Sci Rep. 2021-10-26

[7]
Emerging issue of fluconazole-resistant candidemia in a tertiary care hospital of southern italy: time for antifungal stewardship program.

J Mycol Med. 2022-3

[8]
TMT-based quantitative proteomic analysis of the effects of novel antimicrobial peptide AMP-17 against Candida albicans.

J Proteomics. 2022-1-6

[9]
The Effects of Tormentic Acid and Extracts from on and Growth and Inhibition of Ergosterol Biosynthesis in .

ScientificWorldJournal. 2021

[10]
Inhibitory effect of polyunsaturated fatty acids alone or in combination with fluconazole on Candida krusei biofilms in vitro and in Caenorhabditis elegans.

Med Mycol. 2021-12-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索