Suppr超能文献

用于眼底图像中不平衡糖尿病视网膜病变自动分级的深度注意力卷积神经网络

Deep attentive convolutional neural network for automatic grading of imbalanced diabetic retinopathy in retinal fundus images.

作者信息

Li Feng, Tang Shiqing, Chen Yuyang, Zou Haidong

机构信息

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Shanghai Eye Disease Prevention & Treatment Center, Shanghai 200040, China.

出版信息

Biomed Opt Express. 2022 Oct 14;13(11):5813-5835. doi: 10.1364/BOE.472176. eCollection 2022 Nov 1.

Abstract

Automated fine-grained diabetic retinopathy (DR) grading was of great significance for assisting ophthalmologists in monitoring DR and designing tailored treatments for patients. Nevertheless, it is a challenging task as a result of high intra-class variations, high inter-class similarities, small lesions, and imbalanced data distributions. The pivotal factor for the success in fine-grained DR grading is to discern more subtle associated lesion features, such as microaneurysms (MA), Hemorrhages (HM), soft exudates (SE), and hard exudates (HE). In this paper, we constructed a simple yet effective deep attentive convolutional neural network (DACNN) for DR grading and lesion discovery with only image-wise supervision. Designed as a top-down architecture, our model incorporated stochastic atrous spatial pyramid pooling (sASPP), global attention mechanism (GAM), category attention mechanism (CAM), and learnable connected module (LCM) to better extract lesion-related features and maximize the DR grading performance. To be concrete, we devised sASPP combining randomness with atrous spatial pyramid pooling (ASPP) to accommodate the various scales of the lesions and struggle against the co-adaptation of multiple atrous convolutions. Then, GAM was introduced to extract class-agnostic global attention feature details, whilst CAM was explored for seeking class-specific distinctive region-level lesion feature information and regarding each DR severity grade in an equal way, which tackled the problem of imbalance DR data distributions. Further, the LCM was designed to automatically and adaptively search the optimal connections among layers for better extracting detailed small lesion feature representations. The proposed approach obtained high accuracy of 88.0% and kappa score of 88.6% for multi-class DR grading task on the EyePACS dataset, respectively, while 98.5% AUC, 93.8% accuracy, 87.9% kappa, 90.7% recall, 94.6% precision, and 92.6% F1-score for referral and non-referral classification on the Messidor dataset. Extensive experimental results on three challenging benchmarks demonstrated that the proposed approach achieved competitive performance in DR grading and lesion discovery using retinal fundus images compared with existing cutting-edge methods, and had good generalization capacity for unseen DR datasets. These promising results highlighted its potential as an efficient and reliable tool to assist ophthalmologists in large-scale DR screening.

摘要

自动化的糖尿病视网膜病变(DR)细粒度分级对于协助眼科医生监测DR以及为患者设计个性化治疗方案具有重要意义。然而,由于类内差异大、类间相似度高、病变小以及数据分布不均衡,这是一项具有挑战性的任务。DR细粒度分级成功的关键因素是识别更细微的相关病变特征,如微动脉瘤(MA)、出血(HM)、软性渗出物(SE)和硬性渗出物(HE)。在本文中,我们构建了一个简单而有效的深度注意力卷积神经网络(DACNN),用于仅在图像级监督下进行DR分级和病变发现。我们的模型设计为自上而下的架构,结合了随机空洞空间金字塔池化(sASPP)、全局注意力机制(GAM)、类别注意力机制(CAM)和可学习连接模块(LCM),以更好地提取与病变相关的特征并最大化DR分级性能。具体而言,我们设计了sASPP,将随机性与空洞空间金字塔池化(ASPP)相结合,以适应病变的各种尺度并对抗多个空洞卷积的协同适应。然后,引入GAM来提取与类别无关的全局注意力特征细节,同时探索CAM以寻找特定类别的独特区域级病变特征信息,并平等对待每个DR严重程度等级,从而解决了DR数据分布不均衡的问题。此外,设计LCM以自动自适应地搜索各层之间的最佳连接,以更好地提取详细的小病变特征表示。所提出的方法在EyePACS数据集上的多类DR分级任务中分别获得了88.0%的高精度和88.6%的kappa分数,而在Messidor数据集上的转诊和非转诊分类中分别获得了98.5%的AUC、93.8%的精度、87.9%的kappa、90.7%的召回率、94.6%的精确率和92.6%的F1分数。在三个具有挑战性的基准上的大量实验结果表明,与现有的前沿方法相比,所提出的方法在使用眼底图像进行DR分级和病变发现方面取得了有竞争力的性能,并且对未见过的DR数据集具有良好的泛化能力。这些有前景的结果突出了其作为协助眼科医生进行大规模DR筛查的高效可靠工具的潜力。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验