McLachlan Rowan H, Price James T, Muñoz-Garcia Agustí, Weisleder Noah L, Levas Stephen J, Jury Christopher P, Toonen Robert J, Grottoli Andréa G
School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH, 43210, USA.
Department of Microbiology, Oregon State University, 2820 SW Campus Way, Corvallis, OR, 97331, USA.
Sci Rep. 2022 Mar 10;12(1):3712. doi: 10.1038/s41598-022-06896-z.
Climate change poses a major threat to coral reefs. We conducted an outdoor 22-month experiment to investigate if coral could not just survive, but also physiologically cope, with chronic ocean warming and acidification conditions expected later this century under the Paris Climate Agreement. We recorded survivorship and measured eleven phenotypic traits to evaluate the holobiont responses of Hawaiian coral: color, Symbiodiniaceae density, calcification, photosynthesis, respiration, total organic carbon flux, carbon budget, biomass, lipids, protein, and maximum Artemia capture rate. Survivorship was lowest in Montipora capitata and only some survivors were able to meet metabolic demand and physiologically cope with future ocean conditions. Most M. capitata survivors bleached through loss of chlorophyll pigments and simultaneously experienced increased respiration rates and negative carbon budgets due to a 236% increase in total organic carbon losses under combined future ocean conditions. Porites compressa and Porites lobata had the highest survivorship and coped well under future ocean conditions with positive calcification and increased biomass, maintenance of lipids, and the capacity to exceed their metabolic demand through photosynthesis and heterotrophy. Thus, our findings show that significant biological diversity within resilient corals like Porites, and some genotypes of sensitive species, will persist this century provided atmospheric carbon dioxide levels are controlled. Since Porites corals are ubiquitous throughout the world's oceans and often major reef builders, the persistence of this resilient genus provides hope for future reef ecosystem function globally.
气候变化对珊瑚礁构成了重大威胁。我们进行了一项为期22个月的室外实验,以研究珊瑚是否不仅能够在本世纪后期《巴黎气候协定》所预期的长期海洋变暖和酸化条件下生存,还能在生理上适应这些条件。我们记录了珊瑚的存活率,并测量了11个表型特征,以评估夏威夷珊瑚共生体的反应:颜色、共生藻密度、钙化、光合作用、呼吸作用、总有机碳通量、碳收支、生物量、脂质、蛋白质以及最大卤虫捕获率。头状蔷薇珊瑚的存活率最低,只有一些幸存者能够满足代谢需求并在生理上适应未来的海洋条件。在未来海洋综合条件下,由于总有机碳损失增加了236%,大多数头状蔷薇珊瑚幸存者因叶绿素色素流失而白化,同时呼吸速率增加,碳收支呈负。多孔鹿角珊瑚和瘤状鹿角珊瑚的存活率最高,在未来海洋条件下表现良好,钙化呈正值,生物量增加,脂质得以维持,并且能够通过光合作用和异养作用超过其代谢需求。因此,我们的研究结果表明,如果大气二氧化碳水平得到控制,本世纪像多孔鹿角珊瑚这样的适应力强的珊瑚以及一些敏感物种的基因型中的显著生物多样性将得以持续。由于多孔鹿角珊瑚在全球海洋中普遍存在,且往往是主要的造礁生物,这种适应力强的珊瑚属的持续存在为全球未来珊瑚礁生态系统的功能带来了希望。