Facultad de Medicina. Universidad de Buenos Aires. Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina.
Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado" (FBMC), Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina; Laboratorio de Memoria, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina.
Neuroscience. 2022 Aug 10;497:215-227. doi: 10.1016/j.neuroscience.2022.02.032. Epub 2022 Mar 8.
Spaced training, which involves long inter-trial intervals, has positive effects on memories. One of the main attributes of long-term memories (LTM) is persistence. Here, to identify the process that promotes LTM persistence by spaced learning, we used the spatial object recognition (SOR) task in rats. The protocol consisted of a first strong training session that induced LTM formation (tested 1 day after training), but not LTM persistence (tested 7 or 14 days after training); and a second weak training session that promoted memory persistence when applied 1 day, but not 7 days, after the first training. We propose that the promotion of memory persistence is based on the Behavioral Tagging (BT) mechanism operating when the memory trace is retrieved. BT involves the setting of a tag induced by learning which gives rise to input selectivity, and the use of plasticity-related proteins (PRPs) to establish the mnemonic trace. We postulate that retraining will mainly retag the sites initially activated by the original learning, where the PRPs needed for memory expression and/or induced by retrieval would be used to maintain a persistent mnemonic trace. Our results suggest that the mechanism of memory expression, but not those of memory reinforcement or reconsolidation, is necessary to promote memory persistence after retraining. The molecular mechanisms involve ERKs1/2 activity to set the SOR learning tag, and the availability of GluA2-containing AMPA receptor. In conclusion, both the synthesis of PRPs and the setting of learning tags are key processes triggered by retraining that allow SOR memory persistence.
间隔训练,涉及长的试验间间隔,对记忆有积极影响。长时记忆(LTM)的主要属性之一是持久性。在这里,为了确定通过间隔学习促进 LTM 持久性的过程,我们在大鼠中使用了空间物体识别(SOR)任务。该方案包括第一个强烈的训练阶段,该阶段诱导 LTM 的形成(在训练后 1 天进行测试),但不诱导 LTM 的持久性(在训练后 7 或 14 天进行测试);第二个弱训练阶段在第一次训练后 1 天应用时促进记忆持久性,但在 7 天应用时不促进记忆持久性。我们提出,记忆持久性的促进是基于在记忆痕迹被检索时起作用的行为标记(BT)机制。BT 涉及由学习诱导的标记的设置,该标记导致输入选择性,并且使用与可塑性相关的蛋白(PRPs)来建立记忆痕迹。我们假设再训练将主要重新标记最初由原始学习激活的部位,其中记忆表达所需的 PRPs 或由检索诱导的 PRPs 将用于维持持久的记忆痕迹。我们的结果表明,记忆表达的机制,而不是记忆强化或再巩固的机制,是在再训练后促进记忆持久性所必需的。分子机制涉及 ERKs1/2 活性以设置 SOR 学习标记,以及包含 GluA2 的 AMPA 受体的可用性。总之,PRPs 的合成和学习标记的设置都是由再训练触发的关键过程,允许 SOR 记忆持久性。