Suppr超能文献

数字生成的连线测验数据:使用隐马尔可夫模型进行分析

Digitally generated Trail Making Test data: Analysis using hidden Markov modeling.

作者信息

Du Mengtian, Andersen Stacy L, Cosentino Stephanie, Boudreau Robert M, Perls Thomas T, Sebastiani Paola

机构信息

Department of Biostatistics Boston University Boston Massachusetts USA.

Analysis Group 111 Huntington Ave. 14th floor Boston MA 02119 USA.

出版信息

Alzheimers Dement (Amst). 2022 Mar 8;14(1):e12292. doi: 10.1002/dad2.12292. eCollection 2022.

Abstract

The Trail Making Test (TMT) is a neuropsychological test used to assess cognitive dysfunction. The TMT consists of two parts: TMT-A requires connecting numbers 1 to 25 sequentially; TMT-B requires connecting numbers 1 to 12 and letters A to L sequentially, alternating between numbers and letters. We propose using a digitally recorded version of TMT to capture cognitive or physical functions underlying test performance. We analyzed digital versions of TMT-A and -B to derive time metrics and used Bayesian hidden Markov models to extract additional metrics. We correlated these derived metrics with cognitive and physical function scores using regression. On both TMT-A and -B, digital metrics associated with graphomotor processing test scores and gait speed. Digital metrics on TMT-B were additionally associated with episodic memory test scores and grip strength. These metrics provide additional information of cognitive state and can differentiate cognitive and physical factors affecting test performance.

摘要

连线测验(TMT)是一种用于评估认知功能障碍的神经心理学测试。TMT由两部分组成:TMT-A要求按顺序连接数字1至25;TMT-B要求按顺序连接数字1至12和字母A至L,数字和字母交替进行。我们建议使用TMT的数字录制版本来获取测试表现背后的认知或身体功能。我们分析了TMT-A和TMT-B的数字版本以得出时间指标,并使用贝叶斯隐马尔可夫模型来提取其他指标。我们使用回归分析将这些派生指标与认知和身体功能得分相关联。在TMT-A和TMT-B上,数字指标均与书写运动处理测试得分和步速相关。TMT-B上的数字指标还与情景记忆测试得分和握力相关。这些指标提供了认知状态的额外信息,并且可以区分影响测试表现的认知和身体因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验