Boquete Luciano, Vicente Maria-José, Miguel-Jiménez Juan-Manuel, Sánchez-Morla Eva-María, Ortiz Miguel, Satue Maria, Garcia-Martin Elena
Biomedical Engineering Group, Department of Electronics, University of Alcalá, Spain.
Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, and Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.
Int J Clin Health Psychol. 2022 May-Aug;22(2):100294. doi: 10.1016/j.ijchp.2022.100294. Epub 2022 Feb 23.
BACKGROUND/OBJECTIVE: This study aims to identify objective biomarkers of fibromyalgia (FM) by applying artificial intelligence algorithms to structural data on the neuroretina obtained using swept-source optical coherence tomography (SS-OCT).
The study cohort comprised 29 FM patients and 32 control subjects. The thicknesses of complete retina, 3 retinal layers [ganglion cell layer (GCL+), GCL++ (between the inner limiting membrane and the inner nuclear layer boundaries) and retinal nerve fiber layer (RNFL)] and choroid in 9 areas around the macula were obtained using SS-OCT. Discriminant capacity was evaluated using the area under the curve (AUC) and the Relief algorithm. A diagnostic aid system with an automatic classifier was implemented.
No significant difference ( ≥ .660) was found anywhere in the choroid. In the RNFL, a significant difference was found in the inner inferior region ( = .010). In the GCL+, GCL++ layers and complete retina, a significant difference was found in the 4 regions defining the inner ring: temporal, superior, nasal and inferior. Applying an ensemble RUSBoosted tree classifier to the features with greatest discriminant capacity achieved accuracy = .82 and .82.
This study identifies a potential novel objective and non-invasive biomarker of FM based on retina analysis using SS-OCT.
背景/目的:本研究旨在通过将人工智能算法应用于使用扫频光学相干断层扫描(SS-OCT)获得的神经视网膜结构数据,来识别纤维肌痛(FM)的客观生物标志物。
研究队列包括29名FM患者和32名对照受试者。使用SS-OCT获取黄斑周围9个区域的完整视网膜、3个视网膜层[神经节细胞层(GCL+)、GCL++(在内界膜和内核层边界之间)和视网膜神经纤维层(RNFL)]以及脉络膜的厚度。使用曲线下面积(AUC)和Relief算法评估判别能力。实施了带有自动分类器的诊断辅助系统。
脉络膜各处均未发现显著差异(≥0.660)。在RNFL中,在内下区域发现了显著差异(=0.010)。在GCL+、GCL++层和完整视网膜中,在定义内环的4个区域(颞侧、上方、鼻侧和下方)发现了显著差异。将集成RUSBoosted树分类器应用于具有最大判别能力的特征,准确率达到0.82和0.82。
本研究基于使用SS-OCT的视网膜分析,确定了一种潜在的新型FM客观非侵入性生物标志物。