Khalil Mohammad, Belokrys Gleb
Centre for the Science of Learning & Technology (SLATE), Faculty of Psychology, University of Bergen, Bergen, Norway.
Front Psychol. 2022 Feb 24;13:820813. doi: 10.3389/fpsyg.2022.820813. eCollection 2022.
Social network services such as Twitter are important venues that can be used as rich data sources to mine public opinions about various topics. In this study, we used Twitter to collect data on one of the most growing theories in education, namely Self-Regulated Learning (SRL) and carry out further analysis to investigate What Twitter says about SRL? This work uses three main analysis methods, descriptive, topic modeling, and geocoding analysis. The searched and collected dataset consists of a large volume of relevant SRL tweets equal to 54,070 tweets between 2011 and 2021. The descriptive analysis uncovers a growing discussion on SRL on Twitter from 2011 till 2018 and then markedly decreased till the collection day. For topic modeling, the text mining technique of Latent Dirichlet allocation (LDA) was applied and revealed insights on computationally processed topics. Finally, the geocoding analysis uncovers a diverse community from all over the world, yet a higher density representation of users from the Global North was identified. Further implications are discussed in the paper.
推特等社交网络服务是重要的平台,可作为丰富的数据源来挖掘公众对各种话题的看法。在本研究中,我们利用推特收集有关教育领域发展最快的理论之一——自我调节学习(SRL)的数据,并进行进一步分析,以探究推特对SRL有何看法?这项工作使用了三种主要分析方法,即描述性分析、主题建模和地理编码分析。搜索和收集到的数据集包含大量与SRL相关的推文,在2011年至2021年期间共有54,070条推文。描述性分析揭示了推特上关于SRL的讨论从2011年到2018年不断增加,然后在收集日之前显著减少。对于主题建模,应用了潜在狄利克雷分配(LDA)的文本挖掘技术,并揭示了对经过计算处理的主题的见解。最后,地理编码分析揭示了来自世界各地的多样化社区,但发现全球北方的用户代表性更高。本文还讨论了进一步的影响。