Suppr超能文献

用于心脏手术后死亡风险预测的机器学习模型的开发。

Development of machine learning models for mortality risk prediction after cardiac surgery.

作者信息

Fan Yunlong, Dong Junfeng, Wu Yuanbin, Shen Ming, Zhu Siming, He Xiaoyi, Jiang Shengli, Shao Jiakang, Song Chao

机构信息

Medical School of Chinese PLA, Beijing, China.

Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing, China.

出版信息

Cardiovasc Diagn Ther. 2022 Feb;12(1):12-23. doi: 10.21037/cdt-21-648.

Abstract

BACKGROUND

We developed machine learning models that combine preoperative and intraoperative risk factors to predict mortality after cardiac surgery.

METHODS

Machine learning involving random forest, neural network, support vector machine, and gradient boosting machine was developed and compared with the risk scores of EuroSCORE I and II, Society of Thoracic Surgeons (STS), as well as a logistic regression model. Clinical data were collected from patients undergoing adult cardiac surgery at the First Medical Centre of Chinese PLA General Hospital between December 2008 and December 2017. The primary outcome was post-operative mortality. Model performance was estimated using several metrics, including sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC). The visualization algorithm was implemented using Shapley's additive explanations.

RESULTS

A total of 5,443 patients were enrolled during the study period. The mean EuroSCORE II score was 3.7%, and the actual in-hospital mortality rate was 2.7%. For predicting operative mortality after cardiac surgery, the AUC scores were 0.87, 0.79, 0.81, and 0.82 for random forest, neural network, support vector machine, and gradient boosting machine, compared with 0.70, 0.73, 0.71, and 0.74 for EuroSCORE I and II, STS, and logistic regression model. Shapley's additive explanations analysis of random forest yielded the top-20 predictors and individual-level explanations for each prediction.

CONCLUSIONS

Machine learning models based on available clinical data may be superior to clinical scoring tools in predicting postoperative mortality in patients following cardiac surgery. Explanatory models show the potential to provide personalized risk profiles for individuals by accounting for the contribution of influencing factors. Additional prospective multicenter studies are warranted to confirm the clinical benefit of these machine learning-driven models.

摘要

背景

我们开发了结合术前和术中风险因素的机器学习模型,以预测心脏手术后的死亡率。

方法

开发了涉及随机森林、神经网络、支持向量机和梯度提升机的机器学习,并与欧洲心脏手术风险评估系统I和II、胸外科医师协会(STS)的风险评分以及逻辑回归模型进行比较。收集了2008年12月至2017年12月在中国人民解放军总医院第一医学中心接受成人心脏手术患者的临床数据。主要结局是术后死亡率。使用包括敏感性、特异性、准确性和受试者操作特征曲线下面积(AUC)在内的多种指标评估模型性能。使用夏普利值法进行可视化算法解释。

结果

研究期间共纳入5443例患者。欧洲心脏手术风险评估系统II的平均评分为3.7%,实际住院死亡率为2.7%。对于预测心脏手术后的手术死亡率,随机森林、神经网络、支持向量机和梯度提升机的AUC分数分别为0.87、0.79、0.81和0.82,而欧洲心脏手术风险评估系统I和II、STS及逻辑回归模型的AUC分数分别为0.70、0.73、0.71和0.74。随机森林的夏普利值法分析得出了前20个预测因素以及每个预测的个体水平解释。

结论

基于现有临床数据的机器学习模型在预测心脏手术后患者的术后死亡率方面可能优于临床评分工具。解释性模型通过考虑影响因素的贡献,显示了为个体提供个性化风险概况的潜力。需要更多的前瞻性多中心研究来证实这些机器学习驱动模型的临床益处。

相似文献

引用本文的文献

本文引用的文献

2
AAC and Artificial Intelligence (AI).抗酸杆菌与人工智能
Top Lang Disord. 2019 Oct-Dec;39(4):389-403. doi: 10.1097/tld.0000000000000197.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验