Suppr超能文献

构建并验证急性心肌梗死后经皮冠状动脉介入治疗患者新发心房颤动风险的列线图预测模型。

Construction and validation of a nomogram prediction model for the risk of new-onset atrial fibrillation following percutaneous coronary intervention in acute myocardial infarction patients.

机构信息

Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, No. 1, Swan Lake Road, Hefei, Anhui Province, 230001, China.

出版信息

BMC Cardiovasc Disord. 2024 Nov 13;24(1):642. doi: 10.1186/s12872-024-04326-8.

Abstract

OBJECTIVE

The objective of this study was to investigate risk factors for new-onset atrial fibrillation (NOAF) post-percutaneous coronary intervention (PCI) in patients with acute myocardial infarction (AMI), aiming to develop a predictive nomogram for NOAF risk.

METHODS

A retrospective cohort study involving 397 AMI patients who underwent PCI at a tertiary hospital in Anhui, China, from January 2021 to July 2022 was performed. Patients were divided into NOAF (n = 63) and non-NOAF (n = 334) groups based on post-PCI outcomes. Clinical data were extracted from the hospital information system (HIS) and analyzed using univariate and multivariate logistic regression to identify independent risk factors. A nomogram was generated utilizing R software (version 3.6.1), with its performance evaluated through receiver operating characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and Bootstrap resampling.

RESULTS

Independent risk factors for NOAF included age, left atrial diameter (LAD), Gensini score, N-terminal pro-B-type natriuretic peptide (NT-proBNP), alanine transaminase (ALT), low-density lipoprotein cholesterol (LDL-C), left ventricular end-systolic diameter (LVESD), and ventricular rate (P < 0.05). The nomogram's ROC curve demonstrated an area under the curve (AUC) of 0.925 (95% CI: 0.887-0.963), supported by a Bootstrap-verified AUC of 0.924 (95% CI: 0.883-0.954), reflecting strong discriminative capability. The calibration curve indicated a mean absolute error (MAE) of 0.031 and 0.017 prior to and following Bootstrap verification, respectively, signifying robust calibration. The DCA curve illustrated that the nomogram offered optimal clinical net benefit for patients with a threshold probability of NOAF ranging from 0.01 to 0.99.

CONCLUSION

The nomogram developed from independent risk factors for NOAF exhibits significant predictive accuracy and clinical relevance for evaluating the risk of NOAF in AMI patients following PCI, thereby enabling the identification of high-risk individuals for targeted interventions.

摘要

目的

本研究旨在探讨急性心肌梗死(AMI)患者经皮冠状动脉介入治疗(PCI)后新发心房颤动(NOAF)的危险因素,旨在建立预测 NOAF 风险的列线图。

方法

回顾性分析 2021 年 1 月至 2022 年 7 月在安徽某三级医院行 PCI 的 397 例 AMI 患者的临床资料。根据 PCI 后结局,将患者分为 NOAF(n=63)和非 NOAF(n=334)组。从医院信息系统(HIS)中提取临床数据,采用单因素和多因素逻辑回归分析识别独立危险因素。利用 R 软件(版本 3.6.1)生成列线图,采用受试者工作特征(ROC)曲线、校准曲线、决策曲线分析(DCA)和 Bootstrap 重抽样评估其性能。

结果

年龄、左心房直径(LAD)、Gensini 评分、N 末端 B 型利钠肽前体(NT-proBNP)、丙氨酸氨基转移酶(ALT)、低密度脂蛋白胆固醇(LDL-C)、左心室收缩末期直径(LVESD)和心室率是 NOAF 的独立危险因素(P<0.05)。列线图的 ROC 曲线下面积(AUC)为 0.925(95%可信区间:0.8870.963),经 Bootstrap 验证的 AUC 为 0.924(95%可信区间:0.8830.954),表明其具有较强的判别能力。校准曲线显示,Bootstrap 验证前后平均绝对误差(MAE)分别为 0.031 和 0.017,表明其具有较好的校准度。DCA 曲线表明,列线图在 NOAF 阈值概率为 0.01~0.99 时为患者提供了最佳的临床净获益。

结论

基于 NOAF 独立危险因素建立的列线图对评估 AMI 患者 PCI 后 NOAF 的风险具有显著的预测准确性和临床相关性,有助于识别高危个体,以便进行针对性干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/213c/11562501/a503abd285a4/12872_2024_4326_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验