文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

来自[具体来源未明确]的银纳米颗粒的植物合成与表征:抗菌及细胞毒性特性评估

Phytosynthesis and Characterization of Silver Nanoparticles from : Assessment of Antibacterial and Cytotoxic Properties.

作者信息

Gastelum-Cabrera Marisol, Mendez-Pfeiffer Pablo, Ballesteros-Monrreal Manuel G, Velasco-Rodríguez Brenda, Martínez-Flores Patricia D, Silva-Bea Sergio, Domínguez-Arca Vicente, Prieto Gerardo, Barbosa Silvia, Otero Ana, Taboada Pablo, Juárez Josué

机构信息

Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Regional Centro, Hermosillo 83000, Sonora, Mexico.

Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

出版信息

Pharmaceutics. 2025 May 20;17(5):672. doi: 10.3390/pharmaceutics17050672.


DOI:10.3390/pharmaceutics17050672
PMID:40430963
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12115336/
Abstract

Silver nanoparticles (AgNPs) show promises as antimicrobial biomaterials with use for combating multidrug-resistant microorganisms, and they are widely used in healthcare, medicine, and food industries. However, traditional physicochemical synthesis methods often require harsh conditions and toxic reagents, generating harmful waste. The synthesis of AgNPs using plant-derived bioactive compounds offers an eco-friendly alternative to conventional methods. In this study, a bio-green approach was employed to synthesize AgNPs using ethanolic extracts from leaves (EXT-). The synthesis was optimized under different pH conditions (5.5, 8.0, 10.0) and EXT- concentrations (10-200 μg/mL). Antibacterial activity was evaluated against and , and cytotoxicity was assessed in HeLa, CaCo-2, T731-GFP, and HaCaT cell lines. UV-Vis spectroscopy confirmed nanoparticle formation, with a surface plasmon resonance peak at 410 nm. Alkaline conditions (pH 10.0) favored the formation of smaller, spherical AgNPs. Characterization by DLS, TEM, and AFM revealed uniform nanoparticles with a hydrodynamic diameter of 93.48 ± 1.88 nm and a zeta potential of -37.80 ± 1.28 mV. The AgNPs remained stable in Milli-Q water but tended to aggregate in PBS, DMEM, and MHB media. Antibacterial assays demonstrated significant bactericidal activity against and at 3.9 μg/mL (Ag⁺ equivalent). Cytotoxicity tests showed no toxicity to HeLa, T731-GFP, CaCo-2, or HaCaT cells at concentrations ≥ 7.8 μg/mL after 24 h. These findings highlight extract as a sustainable and cost-effective resource for AgNPs synthesis, with strong antimicrobial properties and potential biomedical applications.

摘要

银纳米颗粒(AgNPs)作为抗菌生物材料在对抗多重耐药微生物方面展现出应用前景,并且它们被广泛应用于医疗保健、医药和食品工业。然而,传统的物理化学合成方法通常需要苛刻的条件和有毒试剂,会产生有害废物。利用植物来源的生物活性化合物合成AgNPs为传统方法提供了一种环保替代方案。在本研究中,采用生物绿色方法,使用树叶乙醇提取物(EXT-)合成AgNPs。在不同pH条件(5.5、8.0、10.0)和EXT-浓度(10 - 200μg/mL)下对合成进行了优化。评估了对[具体细菌名称1]和[具体细菌名称2]的抗菌活性,并在HeLa、CaCo - 2、T731 - GFP和HaCaT细胞系中评估了细胞毒性。紫外可见光谱证实了纳米颗粒的形成,表面等离子体共振峰在410nm处。碱性条件(pH 10.0)有利于形成更小的球形AgNPs。通过动态光散射(DLS)、透射电子显微镜(TEM)和原子力显微镜(AFM)表征显示,纳米颗粒均匀,流体动力学直径为93.48±1.88nm,zeta电位为 - 37.80±1.28mV。AgNPs在超纯水中保持稳定,但在磷酸盐缓冲盐水(PBS)、杜氏改良 Eagle培养基(DMEM)和 Mueller - Hinton肉汤(MHB)培养基中倾向于聚集。抗菌试验表明,在3.9μg/mL(银离子当量)时对[具体细菌名称1]和[具体细菌名称2]具有显著的杀菌活性。细胞毒性测试表明,在24小时后,浓度≥7.8μg/mL时对HeLa、T731 - GFP、CaCo - 2或HaCaT细胞无毒性。这些发现突出了[树叶名称]提取物作为AgNPs合成的可持续且经济高效的资源,具有强大的抗菌性能和潜在的生物医学应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/2bdb440bbff5/pharmaceutics-17-00672-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/385191be5b5c/pharmaceutics-17-00672-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/f9d444cf7c9f/pharmaceutics-17-00672-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/e62f2bf57a46/pharmaceutics-17-00672-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/f9b0a12a0141/pharmaceutics-17-00672-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/9124d3679746/pharmaceutics-17-00672-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/c1bbbbc9aeb7/pharmaceutics-17-00672-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/da1dfeb2abd6/pharmaceutics-17-00672-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/4fa5c4dcac21/pharmaceutics-17-00672-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/0a3029b2041d/pharmaceutics-17-00672-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/2bdb440bbff5/pharmaceutics-17-00672-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/385191be5b5c/pharmaceutics-17-00672-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/f9d444cf7c9f/pharmaceutics-17-00672-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/e62f2bf57a46/pharmaceutics-17-00672-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/f9b0a12a0141/pharmaceutics-17-00672-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/9124d3679746/pharmaceutics-17-00672-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/c1bbbbc9aeb7/pharmaceutics-17-00672-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/da1dfeb2abd6/pharmaceutics-17-00672-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/4fa5c4dcac21/pharmaceutics-17-00672-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/0a3029b2041d/pharmaceutics-17-00672-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4593/12115336/2bdb440bbff5/pharmaceutics-17-00672-g010.jpg

相似文献

[1]
Phytosynthesis and Characterization of Silver Nanoparticles from : Assessment of Antibacterial and Cytotoxic Properties.

Pharmaceutics. 2025-5-20

[2]
Phytosynthesis of Silver Nanoparticles Using Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities.

Int J Nanomedicine. 2021

[3]
Biogenic Synthesis of Silver Nanoparticles using (Decne): Assessment of their Antioxidant, Antimicrobial and Cytotoxic Activities.

Pharm Nanotechnol. 2023

[4]
Optimization of Silver Nanoparticle Synthesis by Banana Peel Extract Using Statistical Experimental Design, and Testing of their Antibacterial and Antioxidant Properties.

Curr Pharm Biotechnol. 2019

[5]
The effect of coffee as a bio reductant in the synthesis of silver nano particles combined with laser photodynamics for bacteria inactivation.

Braz J Biol. 2025-5-2

[6]
Sustainable phyto-fabrication of silver nanoparticles using Gmelina arborea exhibit antimicrobial and biofilm inhibition activity.

Sci Rep. 2022-1-7

[7]
Eco-friendly biosynthesis of silver nanoparticles using marine-derived Fusarium exquisite: optimization, characterization, and evaluation of antimicrobial, antioxidant, and cytotoxic activities.

World J Microbiol Biotechnol. 2025-5-6

[8]
'Chocolate' silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity.

J Colloid Interface Sci. 2016-11-15

[9]
Effect of operational parameters, characterization and antibacterial studies of green synthesis of silver nanoparticles using .

PeerJ. 2018-10-30

[10]
Synthesis, Characterization, Antibacterial and Wound Healing Efficacy of Silver Nanoparticles From .

Front Microbiol. 2021-2-19

引用本文的文献

[1]
Recent Trends in Bioinspired Metal Nanoparticles for Targeting Drug-Resistant Biofilms.

Pharmaceuticals (Basel). 2025-7-5

本文引用的文献

[1]
Analysis of Potential Risk Factors for Multidrug-Resistance at a Burn Unit.

Eur Burn J. 2023-1-11

[2]
Sea Cucumber Viscera Processed by Protease Hydrolysis Combined with Fermentation Protect Caco-2 Cells against Oxidative Damage via Enhancing Antioxidant Capacity, Activating Nrf2/HO-1 Pathway and Improving Cell Metabolism.

Antioxidants (Basel). 2024-8-14

[3]
Respiratory pathogenic microbial infections: a narrative review.

Int J Med Sci. 2024-3-17

[4]
Increase in Incidence Rates and Risk Factors for Multidrug Resistant Bacteria in Septic Children: A Nationwide Spanish Cohort Study (2013-2019).

Antibiotics (Basel). 2023-11-14

[5]
Statistical optimization, characterization, antioxidant and antibacterial properties of silver nanoparticle biosynthesized by saw palmetto seed phenolic extract.

Sci Rep. 2023-9-20

[6]
Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties.

Antibiotics (Basel). 2023-4-27

[7]
Applications of Green Synthesized Metal Nanoparticles - a Review.

Biol Trace Elem Res. 2024-1

[8]
Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications.

Microorganisms. 2023-2-28

[9]
Oridonin inhibits Hela cell proliferation via downregulation of glutathione metabolism: a new insight from metabolomics.

J Pharm Pharmacol. 2023-6-5

[10]
Metabolomics analysis reveals cytotoxic effects of ouabain towards psoriatic keratinocytes via impairment of glutathione metabolism.

Mol Genet Genomics. 2023-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索