Gastelum-Cabrera Marisol, Mendez-Pfeiffer Pablo, Ballesteros-Monrreal Manuel G, Velasco-Rodríguez Brenda, Martínez-Flores Patricia D, Silva-Bea Sergio, Domínguez-Arca Vicente, Prieto Gerardo, Barbosa Silvia, Otero Ana, Taboada Pablo, Juárez Josué
Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Regional Centro, Hermosillo 83000, Sonora, Mexico.
Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Pharmaceutics. 2025 May 20;17(5):672. doi: 10.3390/pharmaceutics17050672.
Silver nanoparticles (AgNPs) show promises as antimicrobial biomaterials with use for combating multidrug-resistant microorganisms, and they are widely used in healthcare, medicine, and food industries. However, traditional physicochemical synthesis methods often require harsh conditions and toxic reagents, generating harmful waste. The synthesis of AgNPs using plant-derived bioactive compounds offers an eco-friendly alternative to conventional methods. In this study, a bio-green approach was employed to synthesize AgNPs using ethanolic extracts from leaves (EXT-). The synthesis was optimized under different pH conditions (5.5, 8.0, 10.0) and EXT- concentrations (10-200 μg/mL). Antibacterial activity was evaluated against and , and cytotoxicity was assessed in HeLa, CaCo-2, T731-GFP, and HaCaT cell lines. UV-Vis spectroscopy confirmed nanoparticle formation, with a surface plasmon resonance peak at 410 nm. Alkaline conditions (pH 10.0) favored the formation of smaller, spherical AgNPs. Characterization by DLS, TEM, and AFM revealed uniform nanoparticles with a hydrodynamic diameter of 93.48 ± 1.88 nm and a zeta potential of -37.80 ± 1.28 mV. The AgNPs remained stable in Milli-Q water but tended to aggregate in PBS, DMEM, and MHB media. Antibacterial assays demonstrated significant bactericidal activity against and at 3.9 μg/mL (Ag⁺ equivalent). Cytotoxicity tests showed no toxicity to HeLa, T731-GFP, CaCo-2, or HaCaT cells at concentrations ≥ 7.8 μg/mL after 24 h. These findings highlight extract as a sustainable and cost-effective resource for AgNPs synthesis, with strong antimicrobial properties and potential biomedical applications.
银纳米颗粒(AgNPs)作为抗菌生物材料在对抗多重耐药微生物方面展现出应用前景,并且它们被广泛应用于医疗保健、医药和食品工业。然而,传统的物理化学合成方法通常需要苛刻的条件和有毒试剂,会产生有害废物。利用植物来源的生物活性化合物合成AgNPs为传统方法提供了一种环保替代方案。在本研究中,采用生物绿色方法,使用树叶乙醇提取物(EXT-)合成AgNPs。在不同pH条件(5.5、8.0、10.0)和EXT-浓度(10 - 200μg/mL)下对合成进行了优化。评估了对[具体细菌名称1]和[具体细菌名称2]的抗菌活性,并在HeLa、CaCo - 2、T731 - GFP和HaCaT细胞系中评估了细胞毒性。紫外可见光谱证实了纳米颗粒的形成,表面等离子体共振峰在410nm处。碱性条件(pH 10.0)有利于形成更小的球形AgNPs。通过动态光散射(DLS)、透射电子显微镜(TEM)和原子力显微镜(AFM)表征显示,纳米颗粒均匀,流体动力学直径为93.48±1.88nm,zeta电位为 - 37.80±1.28mV。AgNPs在超纯水中保持稳定,但在磷酸盐缓冲盐水(PBS)、杜氏改良 Eagle培养基(DMEM)和 Mueller - Hinton肉汤(MHB)培养基中倾向于聚集。抗菌试验表明,在3.9μg/mL(银离子当量)时对[具体细菌名称1]和[具体细菌名称2]具有显著的杀菌活性。细胞毒性测试表明,在24小时后,浓度≥7.8μg/mL时对HeLa、T731 - GFP、CaCo - 2或HaCaT细胞无毒性。这些发现突出了[树叶名称]提取物作为AgNPs合成的可持续且经济高效的资源,具有强大的抗菌性能和潜在的生物医学应用。
J Colloid Interface Sci. 2016-11-15
Front Microbiol. 2021-2-19
Pharmaceuticals (Basel). 2025-7-5
Eur Burn J. 2023-1-11
Int J Med Sci. 2024-3-17
Antibiotics (Basel). 2023-4-27
Biol Trace Elem Res. 2024-1
Microorganisms. 2023-2-28