Suppr超能文献

传染病潜在黑天鹅事件的警示信号。

Warning Signs of Potential Black Swan Outbreaks in Infectious Disease.

作者信息

Velappan Nileena, Davis-Anderson Katie, Deshpande Alina

机构信息

Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States.

出版信息

Front Microbiol. 2022 Feb 24;13:845572. doi: 10.3389/fmicb.2022.845572. eCollection 2022.

Abstract

Black swan events in infectious disease describe rare but devastatingly large outbreaks. While experts are skeptical that such events are predictable, it might be possible to identify the warning signs of a black swan event. Specifically, the initiation of an outbreak, key differentiating features could serve as alerts. Such features could be derived from meta-analyses of large outbreaks for multiple infectious diseases. We hypothesized there may be common features among the pathogen, environment, and host epidemiological triad that characterize an infectious disease black swan event. Using Los Alamos National Laboratory's tool, Analytics for Investigation of Disease Outbreaks, we investigated historical disease outbreak information and anomalous events for several infectious diseases. By studying 32 different infectious diseases and global outbreaks, we observed that in the past 20-30 years, there have been potential black swan events in the majority of infectious diseases analyzed. Importantly, these potential black swan events cannot be attributed to the first introduction of the disease to a susceptible host population. This paper describes our observations and perspectives and illustrates the value of broad analysis of data across the infectious disease realm, providing insights that may not be possible when we focus on singular infectious agents or diseases. Data analytics could be developed to warn health authorities at the beginning of an outbreak of an impending black swan event. Such tools could complement traditional epidemiological modeling to help forecast future large outbreaks and facilitate timely warning and effective, targeted resource allocation for mitigation efforts.

摘要

传染病中的黑天鹅事件是指罕见但极具破坏性的大规模疫情爆发。尽管专家们对这类事件是否可预测持怀疑态度,但识别黑天鹅事件的预警信号或许是有可能的。具体而言,疫情爆发的起始阶段,关键的区别特征可作为警报。这些特征可源自对多种传染病大规模疫情的荟萃分析。我们推测,在病原体、环境和宿主流行病学三元组中可能存在共同特征,这些特征可界定传染病黑天鹅事件。利用洛斯阿拉莫斯国家实验室的疾病爆发调查分析工具,我们研究了几种传染病的历史疫情信息和异常事件。通过研究32种不同的传染病和全球疫情,我们观察到,在过去20至30年里,在大多数分析的传染病中都出现了潜在的黑天鹅事件。重要的是,这些潜在的黑天鹅事件不能归因于疾病首次传入易感宿主群体。本文描述了我们的观察结果和观点,并说明了对传染病领域的数据进行广泛分析的价值,提供了专注于单一传染源或疾病时可能无法获得的见解。可以开发数据分析工具,在黑天鹅事件即将爆发时向卫生当局发出警报。这类工具可补充传统的流行病学建模,以帮助预测未来的大规模疫情,并促进及时预警以及为缓解疫情进行有效、有针对性的资源分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f93/8908372/f1aef50cef0f/fmicb-13-845572-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验