Urner Tara M, Inman Andrew, Lapid Benjamin, Jia Shu
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
These authors contributed equally to this work.
Biomed Opt Express. 2022 Jan 5;13(2):590-607. doi: 10.1364/BOE.447578. eCollection 2022 Feb 1.
Optical endoscopy has emerged as an indispensable clinical tool for modern minimally invasive surgery. Most systems primarily capture a 2D projection of the 3D surgical field. Currently available 3D endoscopes can restore stereoscopic vision directly by projecting laterally shifted views of the operating field to each eye through 3D glasses. These tools provide surgeons with informative 3D visualizations, but they do not enable quantitative volumetric rendering of tissue. Therefore, advanced tools are desired to quantify tissue tomography for high precision microsurgery or medical robotics. Light-field imaging suggests itself as a promising solution to the challenge. The approach can capture both the spatial and angular information of optical signals, permitting the computational synthesis of the 3D volume of an object. In this work, we present GRIN lens array microendoscopy (GLAM), a single-shot, full-color, and quantitative 3D microendoscopy system. GLAM contains integrated fiber optics for illumination and a GRIN lens array to capture the reflected light field. The system exhibits a 3D resolution of ∼100 µm over an imaging depth of ∼22 mm and field of view up to 1 cm. GLAM maintains a small form factor consistent with the clinically desirable design, making the system readily translatable to a clinical prototype.
光学内窥镜已成为现代微创手术不可或缺的临床工具。大多数系统主要捕捉三维手术视野的二维投影。目前可用的三维内窥镜可以通过三维眼镜将手术视野的横向偏移视图投射到每只眼睛,从而直接恢复立体视觉。这些工具为外科医生提供了丰富的三维可视化信息,但它们无法实现组织的定量体积渲染。因此,需要先进的工具来量化组织断层成像,以用于高精度显微手术或医疗机器人技术。光场成像似乎是应对这一挑战的一个有前景的解决方案。该方法可以捕捉光信号的空间和角度信息,从而允许对物体的三维体积进行计算合成。在这项工作中,我们展示了梯度折射率(GRIN)透镜阵列显微内窥镜(GLAM),这是一种单次拍摄、全彩色且定量的三维显微内窥镜系统。GLAM包含用于照明的集成光纤和用于捕捉反射光场的GRIN透镜阵列。该系统在约22毫米的成像深度和高达1厘米的视野范围内表现出约100微米的三维分辨率。GLAM保持了与临床理想设计一致的小尺寸外形,使得该系统易于转化为临床原型。