Suppr超能文献

使用商用双套管探头进行快速宽场深层组织荧光成像的计算显微镜技术。

Computational microscopy for fast widefield deep-tissue fluorescence imaging using a commercial dual-cannula probe.

作者信息

Mitra Ekata, Guo Ruipeng, Nelson Soren, Nagarajan Naveen, Menon Rajesh

机构信息

Department of Electrical & Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.

Department of Computer Science, Boston University, Boston, MA 02215, USA.

出版信息

Opt Contin. 2022 Sep 15;1(9):2091-2099. doi: 10.1364/optcon.469219.

Abstract

A solid-glass cannula serves as a micro-endoscope that can deliver excitation light deep inside tissue while also collecting emitted fluorescence. Then, we utilize deep neural networks to reconstruct images from the collected intensity distributions. By using a commercially available dual-cannula probe, and training a separate deep neural network for each cannula, we effectively double the field of view compared to prior work. We demonstrated ex vivo imaging of fluorescent beads and brain slices and in vivo imaging from whole brains. We clearly resolved 4 μm beads, with FOV from each cannula of 0.2 mm (diameter), and produced images from a depth of ~1.2 mm in the whole brain, currently limited primarily by the labeling. Since no scanning is required, fast widefield fluorescence imaging limited primarily by the brightness of the fluorophores, collection efficiency of our system, and the frame rate of the camera becomes possible.

摘要

实心玻璃插管用作微型内窥镜,它可以将激发光传输到组织深处,同时收集发射的荧光。然后,我们利用深度神经网络从收集到的强度分布重建图像。通过使用市售的双插管探头,并为每个插管训练单独的深度神经网络,与之前的工作相比,我们有效地将视野扩大了一倍。我们展示了荧光珠和脑切片的离体成像以及全脑的活体成像。我们清晰地分辨出了4μm的珠子,每个插管的视野为0.2mm(直径),并在全脑中从约1.2mm的深度生成了图像,目前主要受标记限制。由于无需扫描,主要受荧光团亮度、我们系统的收集效率和相机帧率限制的快速宽场荧光成像成为可能。

相似文献

2
Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy.
Sci Rep. 2017 Mar 20;7:44791. doi: 10.1038/srep44791.
3
3D computational cannula fluorescence microscopy enabled by artificial neural networks.
Opt Express. 2020 Oct 26;28(22):32342-32348. doi: 10.1364/OE.403238.
4
Computational cannula microscopy of neurons using neural networks.
Opt Lett. 2020 Apr 1;45(7):2111-2114. doi: 10.1364/OL.387496.
5
Micro-endoscope for in vivo widefield high spatial resolution fluorescent imaging.
Biomed Opt Express. 2012 Jun 1;3(6):1274-8. doi: 10.1364/BOE.3.001274. Epub 2012 May 4.
6
Photonic neural probe enabled microendoscopes for light-sheet light-field computational fluorescence brain imaging.
Neurophotonics. 2024 Sep;11(Suppl 1):S11503. doi: 10.1117/1.NPh.11.S1.S11503. Epub 2024 Feb 6.
7
9
Numerical analysis of computational-cannula microscopy.
Appl Opt. 2017 Mar 20;56(9):D1-D7. doi: 10.1364/AO.56.0000D1.
10
Needle-based deep-neural-network camera.
Appl Opt. 2021 Apr 1;60(10):B135-B140. doi: 10.1364/AO.415059.

引用本文的文献

1
Demixing fluorescence time traces transmitted by multimode fibers.
Nat Commun. 2024 Jul 26;15(1):6286. doi: 10.1038/s41467-024-50306-z.

本文引用的文献

1
Bijective-constrained cycle-consistent deep learning for optics-free imaging and classification.
Optica. 2022 Jan 20;9(1):26-31. doi: 10.1364/optica.440575. Epub 2022 Jan 3.
2
In vivo two-photon fluorescence lifetime imaging microendoscopy based on fiber-bundle.
Opt Lett. 2022 May 1;47(9):2137-2140. doi: 10.1364/OL.453102.
3
Large-scale two-photon calcium imaging in freely moving mice.
Cell. 2022 Mar 31;185(7):1240-1256.e30. doi: 10.1016/j.cell.2022.02.017. Epub 2022 Mar 18.
4
Three-dimensional light-field microendoscopy with a GRIN lens array.
Biomed Opt Express. 2022 Jan 5;13(2):590-607. doi: 10.1364/BOE.447578. eCollection 2022 Feb 1.
5
High-resolution intravital imaging of the murine hypothalamus using GRIN lenses and confocal microscopy.
STAR Protoc. 2022 Feb 23;3(1):101193. doi: 10.1016/j.xpro.2022.101193. eCollection 2022 Mar 18.
6
8
Two-Photon Fluorescence Microscopy and Applications in Angiogenesis and Related Molecular Events.
Tissue Eng Part B Rev. 2022 Aug;28(4):926-937. doi: 10.1089/ten.TEB.2021.0140. Epub 2022 Jan 5.
9
Leptin receptor-expressing pericytes mediate access of hypothalamic feeding centers to circulating leptin.
Cell Metab. 2021 Jul 6;33(7):1433-1448.e5. doi: 10.1016/j.cmet.2021.05.017. Epub 2021 Jun 14.
10
Needle-based deep-neural-network camera.
Appl Opt. 2021 Apr 1;60(10):B135-B140. doi: 10.1364/AO.415059.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验