Suppr超能文献

仅使用序列模型进行大规模设计和改进稳定蛋白。

Large-scale design and refinement of stable proteins using sequence-only models.

机构信息

Two Six Technologies, Arlington, Virginia, United States of America.

Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, United States of America.

出版信息

PLoS One. 2022 Mar 14;17(3):e0265020. doi: 10.1371/journal.pone.0265020. eCollection 2022.

Abstract

Engineered proteins generally must possess a stable structure in order to achieve their designed function. Stable designs, however, are astronomically rare within the space of all possible amino acid sequences. As a consequence, many designs must be tested computationally and experimentally in order to find stable ones, which is expensive in terms of time and resources. Here we use a high-throughput, low-fidelity assay to experimentally evaluate the stability of approximately 200,000 novel proteins. These include a wide range of sequence perturbations, providing a baseline for future work in the field. We build a neural network model that predicts protein stability given only sequences of amino acids, and compare its performance to the assayed values. We also report another network model that is able to generate the amino acid sequences of novel stable proteins given requested secondary sequences. Finally, we show that the predictive model-despite weaknesses including a noisy data set-can be used to substantially increase the stability of both expert-designed and model-generated proteins.

摘要

为了实现设计功能,工程蛋白通常必须具有稳定的结构。然而,在所有可能的氨基酸序列空间中,稳定的设计极其罕见。因此,为了找到稳定的设计,许多设计都必须在计算和实验上进行测试,这在时间和资源方面都是昂贵的。在这里,我们使用高通量、低保真度的测定法来实验评估大约 200000 个新蛋白的稳定性。这些蛋白包括广泛的序列扰动,为该领域的未来工作提供了基准。我们构建了一个神经网络模型,仅根据氨基酸序列预测蛋白稳定性,并将其性能与测定值进行比较。我们还报告了另一个网络模型,该模型能够根据请求的二级序列生成新的稳定蛋白的氨基酸序列。最后,我们表明,尽管预测模型存在数据集噪声等弱点,但它可以被用来显著提高专家设计和模型生成的蛋白的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6455/8920274/bd83a0ca8332/pone.0265020.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验