School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
Genea, Sydney, NSW, 2000, Australia.
Sci Rep. 2022 Mar 14;12(1):4383. doi: 10.1038/s41598-022-08300-2.
Intracellular delivery of nanomaterials into the cells of interest has enabled cell manipulation for numerous applications ranging from cell-based therapies to biomedical research. To date, different carriers or membrane poration-based techniques have been developed to load nanomaterials to the cell interior. These biotools have shown promise to surpass the membrane barrier and provide access to the intracellular space followed by passive diffusion of exogenous cargoes. However, most of them suffer from inconsistent delivery, cytotoxicity, and expensive protocols, somewhat limiting their utility in a variety of delivery applications. Here, by leveraging the benefits of microengineered porous membranes with a suitable porosity, we demonstrated an efficient intracellular loading of diverse nanomaterials to different cell types based on inducing mechanical disruption to the cell membrane. In this work, for the first time, we used ultra-thin silicon nitride (SiN) filter membranes with uniform micropores smaller than the cell diameter to load impermeable nanomaterials into adherent and non-adherent cell types. The delivery performance using SiN microsieves has been validated through the loading of functional nanomaterials from a few nanometers to hundreds of nanometers into mammalian cells with minimal undesired impacts. Besides the high delivery efficiency and improved cell viability, this simple and low-cost approach offers less clogging and higher throughput (10 cell min). Therefore, it yields to the efficient introduction of exogenous nanomaterials into the large population of cells, illustrating the potential of these microengineered filters to be widely used in the microfiltroporation (MFP) setup.
将纳米材料递送到靶细胞内,使得基于细胞的疗法到生物医学研究等众多应用中的细胞操作成为可能。迄今为止,已经开发出了不同的载体或基于膜穿孔的技术,以将纳米材料装载到细胞内部。这些生物工具在突破细胞膜障碍方面显示出了巨大的潜力,为细胞内空间提供了进入途径,随后外源性货物可以被动扩散。然而,它们中的大多数都存在传递效率不一致、细胞毒性和昂贵的方案等问题,在各种传递应用中,在一定程度上限制了它们的实用性。在这里,通过利用具有合适孔隙率的微工程多孔膜的优势,我们展示了一种基于诱导细胞膜机械破坏的高效的将不同纳米材料递送到不同细胞类型的方法。在这项工作中,我们首次使用具有小于细胞直径的均匀微孔的超薄氮化硅 (SiN) 过滤膜将不可渗透的纳米材料加载到贴壁和非贴壁细胞类型中。通过将几纳米到几百纳米的功能性纳米材料加载到哺乳动物细胞中,验证了 SiN 微筛的传递性能,对细胞几乎没有产生不必要的影响。除了高传递效率和提高细胞活力外,这种简单且低成本的方法还具有较少的堵塞和更高的通量(10 个细胞/分钟)。因此,它能够将外源性纳米材料有效地引入到大量细胞中,这说明了这些微工程滤器在微过滤穿孔 (MFP) 装置中得到广泛应用的潜力。