Jiang Shan, D'Amario Luca, Dau Holger
Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden.
ChemSusChem. 2022 Apr 22;15(8):e202102506. doi: 10.1002/cssc.202102506. Epub 2022 Mar 22.
Copper electrodes are especially effective in catalysis of C and further multi-carbon products in the CO reduction reaction (CO RR) and therefore of major technological interest. The reasons for the unparalleled Cu performance in CO RR are insufficiently understood. Here, the electrode-electrolyte interface was highlighted as a dynamic physical-chemical system and determinant of catalytic events. Exploiting the intrinsic surface-enhanced Raman effect of previously characterized Cu foam electrodes, operando Raman experiments were used to interrogate structures and molecular interactions at the electrode-electrolyte interface at subcatalytic and catalytic potentials. Formation of a copper carbonate hydroxide (CuCarHyd) was detected, which resembles the mineral malachite. Its carbonate ions could be directly converted to CO at low overpotential. These and further experiments suggested a basic mode of CO /carbonate reduction at Cu electrodes interfaces that contrasted previous mechanistic models: the starting point in carbon reduction was not CO but carbonate ions bound to the metallic Cu electrode in form of CuCarHyd structures. It was hypothesized that Cu oxides residues could enhance CO RR indirectly by supporting formation of CuCarHyd motifs. The presence of CuCarHyd patches at catalytic potentials might result from alkalization in conjunction with local electrical potential gradients, enabling the formation of metastable CuCarHyd motifs over a large range of potentials.
铜电极在催化一氧化碳还原反应(CO RR)中的碳及进一步的多碳产物方面特别有效,因此具有重大的技术意义。目前对铜在CO RR中表现出无与伦比性能的原因了解不足。在此,电极 - 电解质界面被视为一个动态的物理化学系统以及催化过程的决定因素。利用先前表征的泡沫铜电极的固有表面增强拉曼效应,通过原位拉曼实验来探究在亚催化和催化电位下电极 - 电解质界面的结构和分子相互作用。检测到形成了一种碱式碳酸铜(CuCarHyd),它类似于矿物孔雀石。其碳酸根离子在低过电位下可直接转化为CO。这些以及进一步的实验表明了铜电极界面处CO/碳酸盐还原的基本模式,这与先前的机理模型不同:碳还原的起点不是CO,而是以CuCarHyd结构形式与金属铜电极结合的碳酸根离子。据推测,氧化铜残余物可能通过支持CuCarHyd基序的形成来间接增强CO RR。催化电位下CuCarHyd斑块的存在可能是碱化与局部电势梯度共同作用的结果,使得在大范围电位内能够形成亚稳态的CuCarHyd基序。