Suppr超能文献

用于检测肿瘤标志物3-甲氧基酪胺的基于金纳米颗粒的化学传感器的合理设计。

Rational design of gold nanoparticle-based chemosensors for detection of the tumor marker 3-methoxytyramine.

作者信息

Franco-Ulloa Sebastian, Cesari Andrea, Zanoni Giordano, Riccardi Laura, Wallace Joseph, Mascitti Beatrice Bernadette, Rastrelli Federico, Mancin Fabrizio, De Vivo Marco

机构信息

Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy

Expert Analytics Møllergata 8 0179 Oslo Norway.

出版信息

Chem Sci. 2025 Mar 4;16(15):6282-6289. doi: 10.1039/d4sc08758e. eCollection 2025 Apr 9.

Abstract

In this study, we combined computational modeling, simulations, and experiments to design gold nanoparticle-based receptors specifically tailored for the NMR detection of 3-methoxytyramine (3-MT), a prognostic marker for asymptomatic neuroblastoma. We used short steered MD simulations to rank a library of 100 newly functionalized, tripeptide-coated AuNPs for their ability to recognize 3-MT. Validation of the computational analysis was performed on a subset of synthesized tripeptide-coated nanoparticles, showing a strong correlation between the predicted and experimental affinities. Eventually, we tested the sensing performance using nanoparticle-assisted NMR chemosensing, a technique which relies on magnetization transfer within a nanoparticle-host/analyte-guest complex to isolate the sole NMR signals of the analyte. This approach led to the identification of novel chemosensors that exhibited better performance compared to existing ones, lowering the limit of detection below 25 μM and demonstrating the utility of this integrated strategy.

摘要

在本研究中,我们结合了计算建模、模拟和实验,以设计基于金纳米颗粒的受体,这些受体是专门为无症状神经母细胞瘤的预后标志物3-甲氧基酪胺(3-MT)的核磁共振(NMR)检测量身定制的。我们使用短程引导分子动力学(MD)模拟,对100个新功能化的、三肽包被的金纳米颗粒文库进行排序,以评估它们识别3-MT的能力。对合成的三肽包被纳米颗粒的一个子集进行了计算分析验证,结果表明预测亲和力与实验亲和力之间存在很强的相关性。最终,我们使用纳米颗粒辅助NMR化学传感技术测试了传感性能,该技术依赖于纳米颗粒主体/分析物客体复合物内的磁化转移来分离分析物的唯一NMR信号。这种方法导致鉴定出了性能优于现有化学传感器的新型化学传感器,将检测限降低到25μM以下,并证明了这种综合策略的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验