DeBenedictis Erika Alden, Söll Dieter, Esvelt Kevin M
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.
Department of Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, United States.
Elife. 2022 Mar 16;11:e76941. doi: 10.7554/eLife.76941.
Translation using four-base codons occurs in both natural and synthetic systems. What constraints contributed to the universal adoption of a triplet codon, rather than quadruplet codon, genetic code? Here, we investigate the tolerance of the genetic code to tRNA mutations that increase codon size. We found that tRNAs from all 20 canonical isoacceptor classes can be converted to functional quadruplet tRNAs (qtRNAs). Many of these selectively incorporate a single amino acid in response to a specified four-base codon, as confirmed with mass spectrometry. However, efficient quadruplet codon translation often requires multiple tRNA mutations. Moreover, while tRNAs were largely amenable to quadruplet conversion, only nine of the twenty aminoacyl tRNA synthetases tolerate quadruplet anticodons. These may constitute a functional and mutually orthogonal set, but one that sharply limits the chemical alphabet available to a nascent all-quadruplet code. Our results suggest that the triplet codon code was selected because it is simpler and sufficient, not because a quadruplet codon code is unachievable. These data provide a blueprint for synthetic biologists to deliberately engineer an all-quadruplet expanded genetic code.
使用四碱基密码子的翻译在天然和合成系统中均有发生。是什么限制因素促使三联体密码子而非四联体密码子的遗传密码被普遍采用呢?在此,我们研究了遗传密码对增加密码子长度的tRNA突变的耐受性。我们发现,来自所有20种标准同功受体类别的tRNA都可以转化为功能性四联体tRNA(qtRNA)。通过质谱分析证实,其中许多tRNA能够响应特定的四碱基密码子选择性地掺入单一氨基酸。然而,高效的四联体密码子翻译通常需要多个tRNA突变。此外,虽然tRNA在很大程度上适合四联体转化,但二十种氨酰tRNA合成酶中只有九种能够耐受四联体反密码子。这些可能构成一个功能性且相互正交的集合,但这个集合极大地限制了新生的全四联体密码可用的化学字母表。我们的结果表明,选择三联体密码子是因为它更简单且足够,而不是因为四联体密码子无法实现。这些数据为合成生物学家刻意构建全四联体扩展遗传密码提供了蓝图。