IEEE Trans Med Imaging. 2022 Aug;41(8):2191-2204. doi: 10.1109/TMI.2022.3158474. Epub 2022 Aug 1.
Photoacoustic imaging is a promising approach used to realize in vivo transcranial cerebral vascular imaging. However, the strong attenuation and distortion of the photoacoustic wave caused by the thick porous skull greatly affect the imaging quality. In this study, we developed a convolutional neural network based on U-Net to extract the effective photoacoustic information hidden in the speckle patterns obtained from vascular network images datasets under porous media. Our simulation and experimental results show that the proposed neural network can learn the mapping relationship between the speckle pattern and the target, and extract the photoacoustic signals of the vessels submerged in noise to reconstruct high-quality images of the vessels with a sharp outline and a clean background. Compared with the traditional photoacoustic reconstruction methods, the proposed deep learning-based reconstruction algorithm has a better performance with a lower mean absolute error, higher structural similarity, and higher peak signal-to-noise ratio of reconstructed images. In conclusion, the proposed neural network can effectively extract valid information from highly blurred speckle patterns for the rapid reconstruction of target images, which offers promising applications in transcranial photoacoustic imaging.
光声成像是一种很有前途的方法,用于实现活体颅外脑血管成像。然而,由于厚的多孔颅骨对光声波的强烈衰减和失真,极大地影响了成像质量。在这项研究中,我们开发了一种基于 U-Net 的卷积神经网络,从血管网络图像数据集的散斑模式中提取隐藏的有效光声信息。我们的模拟和实验结果表明,所提出的神经网络可以学习散斑模式与目标之间的映射关系,并提取淹没在噪声中的血管的光声信号,以重建具有清晰轮廓和干净背景的血管的高质量图像。与传统的光声重建方法相比,所提出的基于深度学习的重建算法具有更好的性能,具有更低的均方根误差、更高的结构相似性和更高的重建图像的峰值信噪比。总之,所提出的神经网络可以有效地从高度模糊的散斑模式中提取有效信息,快速重建目标图像,为颅外光声成像提供了有前途的应用。