Suppr超能文献

利用深度学习技术从半球形稀疏传感器生成虚拟密集传感器,从而减少光声图像中的伪影。

Artifact reduction in photoacoustic images by generating virtual dense array sensor from hemispheric sparse array sensor using deep learning.

机构信息

SIT Research Laboratories, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-8548, Japan.

出版信息

J Med Ultrason (2001). 2024 Apr;51(2):169-183. doi: 10.1007/s10396-024-01413-3. Epub 2024 Mar 14.

Abstract

PURPOSE

Vascular distribution is important information for diagnosing diseases and supporting surgery. Photoacoustic imaging is a technology that can image blood vessels noninvasively and with high resolution. In photoacoustic imaging, a hemispherical array sensor is especially suitable for measuring blood vessels running in various directions. However, as a hemispherical array sensor, a sparse array sensor is often used due to technical and cost issues, which causes artifacts in photoacoustic images. Therefore, in this study, we reduce these artifacts using deep learning technology to generate signals of virtual dense array sensors.

METHODS

Generating 2D virtual array sensor signals using a 3D convolutional neural network (CNN) requires huge computational costs and is impractical. Therefore, we installed virtual sensors between the real sensors along the spiral pattern in three different directions and used a 2D CNN to generate signals of the virtual sensors in each direction. Then we reconstructed a photoacoustic image using the signals from both the real sensors and the virtual sensors.

RESULTS

We evaluated the proposed method using simulation data and human palm measurement data. We found that these artifacts were significantly reduced in the images reconstructed using the proposed method, while the artifacts were strong in the images obtained only from the real sensor signals.

CONCLUSION

Using the proposed method, we were able to significantly reduce artifacts, and as a result, it became possible to recognize deep blood vessels. In addition, the processing time of the proposed method was sufficiently applicable to clinical measurement.

摘要

目的

血管分布是诊断疾病和辅助手术的重要信息。光声成像是一种可以非侵入性地以高分辨率成像血管的技术。在光声成像中,半球形阵列传感器特别适合测量各种方向的血管。然而,由于技术和成本问题,作为半球形阵列传感器,通常使用稀疏阵列传感器,这会导致光声图像中的伪影。因此,在本研究中,我们使用深度学习技术来减少这些伪影,从而生成虚拟密集阵列传感器的信号。

方法

使用三维卷积神经网络(CNN)生成二维虚拟阵列传感器信号需要巨大的计算成本,因此不切实际。因此,我们沿着三个不同方向的螺旋图案在真实传感器之间安装虚拟传感器,并使用二维 CNN 生成每个方向虚拟传感器的信号。然后,我们使用真实传感器和虚拟传感器的信号重建光声图像。

结果

我们使用模拟数据和人体手掌测量数据评估了所提出的方法。我们发现,在使用所提出的方法重建的图像中,这些伪影显著减少,而仅使用真实传感器信号获得的图像中的伪影较强。

结论

使用所提出的方法,我们能够显著减少伪影,从而能够识别深血管。此外,所提出的方法的处理时间足够适用于临床测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7087/11098876/17bceade795a/10396_2024_1413_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验