Suppr超能文献

基于偏振自注意力密集型 U-Net 的颅外光声成像去噪。

Removing Artifacts in Transcranial Photoacoustic Imaging With Polarized Self-Attention Dense-UNet.

机构信息

Academy for Engineering and Technology, Fudan University, Shanghai 200438, China.

Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China.

出版信息

Ultrasound Med Biol. 2024 Oct;50(10):1530-1543. doi: 10.1016/j.ultrasmedbio.2024.06.006. Epub 2024 Jul 15.

Abstract

OBJECTIVE

Photoacoustic imaging (PAI) is a promising transcranial imaging technique. However, the distortion of photoacoustic signals induced by the skull significantly influences its imaging quality. We aimed to use deep learning for removing artifacts in PAI.

METHODS

In this study, we propose a polarized self-attention dense U-Net, termed PSAD-UNet, to correct the distortion and accurately recover imaged objects beneath bone plates. To evaluate the performance of the proposed method, a series of experiments was performed using a custom-built PAI system.

RESULTS

The experimental results showed that the proposed PSAD-UNet method could effectively implement transcranial PAI through a one- or two-layer bone plate. Compared with the conventional delay-and-sum and classical U-Net methods, PSAD-UNet can diminish the influence of bone plates and provide high-quality PAI results in terms of structural similarity and peak signal-to-noise ratio. The 3-D experimental results further confirm the feasibility of PSAD-UNet in 3-D transcranial imaging.

CONCLUSION

PSAD-UNet paves the way for implementing transcranial PAI with high imaging accuracy, which reveals broad application prospects in preclinical and clinical fields.

摘要

目的

光声成像是一种很有前途的颅穿透成像技术。然而,颅骨对光声信号的失真会显著影响其成像质量。我们旨在利用深度学习来去除光声成像中的伪影。

方法

在这项研究中,我们提出了一种极化自注意密集 U-Net,称为 PSAD-UNet,用于校正失真并准确恢复颅骨下的成像目标。为了评估所提出方法的性能,我们使用定制的光声成像系统进行了一系列实验。

结果

实验结果表明,所提出的 PSAD-UNet 方法可以有效地通过一层或两层骨板实现颅穿透光声成像。与传统的延迟求和和经典的 U-Net 方法相比,PSAD-UNet 可以减小骨板的影响,并在结构相似性和峰值信噪比方面提供高质量的光声成像结果。三维实验结果进一步证实了 PSAD-UNet 在三维颅穿透成像中的可行性。

结论

PSAD-UNet 为实现具有高成像精度的颅穿透光声成像铺平了道路,这在临床前和临床领域具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验