Suppr超能文献

深度学习增强人体血管容积式光声成像

Deep Learning Enhanced Volumetric Photoacoustic Imaging of Vasculature in Human.

机构信息

Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, NY, 14260, USA.

Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, New York, NY, 14260, USA.

出版信息

Adv Sci (Weinh). 2023 Oct;10(29):e2301277. doi: 10.1002/advs.202301277. Epub 2023 Aug 2.

Abstract

The development of high-performance imaging processing algorithms is a core area of photoacoustic tomography. While various deep learning based image processing techniques have been developed in the area, their applications in 3D imaging are still limited due to challenges in computational cost and memory allocation. To address those limitations, this work implements a 3D fully-dense (3DFD) U-net to linear array based photoacoustic tomography and utilizes volumetric simulation and mixed precision training to increase efficiency and training size. Through numerical simulation, phantom imaging, and in vivo experiments, this work demonstrates that the trained network restores the true object size, reduces the noise level and artifacts, improves the contrast at deep regions, and reveals vessels subject to limited view distortion. With these enhancements, 3DFD U-net successfully produces clear 3D vascular images of the palm, arms, breasts, and feet of human subjects. These enhanced vascular images offer improved capabilities for biometric identification, foot ulcer evaluation, and breast cancer imaging. These results indicate that the new algorithm will have a significant impact on preclinical and clinical photoacoustic tomography.

摘要

高性能成像处理算法的发展是光声断层成像的核心领域。虽然在该领域已经开发出了各种基于深度学习的图像处理技术,但由于计算成本和内存分配方面的挑战,它们在 3D 成像中的应用仍然受到限制。为了解决这些限制,本工作实现了一种基于线性阵列的 3D 全卷积(3DFD)U-Net 光声断层成像,并利用体模仿真和混合精度训练来提高效率和训练规模。通过数值模拟、体模成像和体内实验,本工作证明了训练后的网络能够恢复真实物体的大小,降低噪声水平和伪影,提高深部对比度,并揭示受有限视角变形影响的血管。通过这些增强,3DFD U-Net 成功地生成了人体手掌、手臂、乳房和脚部的清晰 3D 血管图像。这些增强的血管图像为生物特征识别、足部溃疡评估和乳腺癌成像提供了更好的能力。这些结果表明,新算法将对临床前和临床光声断层成像产生重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a9/10582405/d2fa2bdfd159/ADVS-10-2301277-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验