Siegler Timothy D, Dunlap-Shohl Wiley A, Meng Yuhuan, Yang Yuhang, Kau Wylie F, Sunkari Preetham P, Tsai Chang En, Armstrong Zachary J, Chen Yu-Chia, Beck David A C, Meilă Marina, Hillhouse Hugh W
Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-0005, United States.
Clean Energy Institute, University of Washington, Seattle, Washington 98195-0005, United States.
J Am Chem Soc. 2022 Mar 30;144(12):5552-5561. doi: 10.1021/jacs.2c00391. Epub 2022 Mar 17.
Halide perovskites have the potential to disrupt the photovoltaics market based on their high performance and low cost. However, the decomposition of perovskites under moisture, oxygen, and light raises concerns about service lifetime, especially because degradation mechanisms and the corresponding rate laws that fit the observed data have thus far eluded researchers. Here, we report a water-accelerated photooxidation mechanism dominating the degradation kinetics of archetypal perovskite CHNHPbI in air under >1% relative humidity at 25 °C. From this mechanism, we develop a kinetic model that quantitatively predicts the degradation rate as a function of temperature, ambient O and HO levels, and illumination. Because water is a possible product of dry photooxidation, these results highlight the need for encapsulation schemes that rigorously block oxygen ingress, as product water may accumulate beneath the encapsulant and initiate the more rapid water-accelerated photooxidative decomposition.
卤化物钙钛矿因其高性能和低成本,有潜力颠覆光伏市场。然而,钙钛矿在湿气、氧气和光照条件下的分解引发了人们对其使用寿命的担忧,特别是因为降解机制以及符合观测数据的相应速率定律至今仍未被研究人员掌握。在此,我们报告了一种水加速光氧化机制,该机制主导了典型钙钛矿CHNHPbI在25℃、相对湿度>1%的空气中的降解动力学。基于此机制,我们开发了一个动力学模型,该模型可定量预测降解速率与温度、环境氧气和水汽水平以及光照的函数关系。由于水可能是干法光氧化的产物,这些结果凸显了采用严格阻止氧气进入的封装方案的必要性,因为产物水可能会在封装剂下方积聚,并引发更快的水加速光氧化分解。