Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America.
Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
Biomed Phys Eng Express. 2022 Apr 5;8(3). doi: 10.1088/2057-1976/ac5ebe.
Easily computable quality metrics for measured medical data at point-of-care are important for imaging technologies involving offline reconstruction. Accordingly, we developed a new data quality metric fortransversely-isotropic (TI) magnetic resonance elastography (MRE) based on a generalization of the widely accepted octahedral shear-strain calculation. The metric uses MRE displacement data and an estimate of the TI property field to yield a 'stability map' which predicts regions of low versus high accuracy in the resulting material property reconstructions. We can also calculate an average TI parameter stability (TIPS) score over all voxels in a region of interest for a given measurement to indicate how reliable the recovered mechanical property estimate for the region is expected to be. The calculation is rapid and places little demand on computing resources compared to the computationally intensive material property reconstruction from non-linear inversion (TI-NLI) of displacement fields, making it ideal for point-of-care evaluation of data quality. We test the predictions of the stability map for both simulated phantoms andhuman brain data. We used a range of different displacement datasets from vibrations applied in the anterior-posterior (AP), left-right (LR) and combined AP + LR directions. The TIPS and variability maps (noise sensitivity or variation from the mean of repeated MRE scans) were consistently anti-correlated. Notably, Spearman correlation coefficients ∣R∣>0.6 were found between variability and TIPS score for individual white matter tracts withdata. These observations demonstrate the reliability and promise of this data quality metric to screen data rapidly in realistic clinical MRE applications.
便于在床边计算的测量医学数据的质量度量对于涉及离线重建的成像技术非常重要。因此,我们基于广泛接受的八面体剪切应变计算的推广,为各向同性(TI)磁共振弹性成像(MRE)开发了一种新的数据质量度量。该度量使用 MRE 位移数据和 TI 属性场的估计值,生成一个“稳定性图”,预测材料属性重建中准确性低与高的区域。我们还可以计算感兴趣区域中所有体素的平均 TI 参数稳定性(TIPS)评分,以指示对该区域的恢复机械属性估计的可靠性。与从非线性位移场反演(TI-NLI)的材料属性重建相比,该计算速度快,对计算资源的要求低,非常适合床边评估数据质量。我们在模拟体模和人脑数据上测试稳定性图的预测。我们使用了来自在前部-后部(AP)、左右(LR)和 AP+LR 方向施加的振动的一系列不同的位移数据集。TIPS 和可变性图(重复性 MRE 扫描的平均值的噪声灵敏度或变化)始终呈负相关。值得注意的是,个别白质束的数据具有与可变性和 TIPS 评分之间的Spearman 相关系数∣R∣>0.6。这些观察结果表明,该数据质量度量具有可靠性和前景,可以快速筛选现实临床 MRE 应用中的数据。