Suppr超能文献

颗粒结构对二氧化硅包覆的 CdSe 核/壳量子点光致发光性能的影响。

Influence of particle architecture on the photoluminescence properties of silica-coated CdSe core/shell quantum dots.

机构信息

Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia.

Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01062, Dresden, Germany.

出版信息

Anal Bioanal Chem. 2022 Jun;414(15):4427-4439. doi: 10.1007/s00216-022-04005-7. Epub 2022 Mar 18.

Abstract

Light-emitting nanoparticles like semiconductor nanocrystals (termed quantum dots, QDs) are promising candidates for biosensing and bioimaging applications based on their bright and stable photoluminescent properties. As high-quality QDs are often synthesized in organic solvents, strategies needed to be developed to render them water-dispersible without affecting their optical properties and prevent changes in postmodification steps like the biofunctionalization with antibodies or DNA. Despite a large number of studies on suitable surface modification procedures, the preparation of water-soluble QDs for nanobiotechnology applications still presents a challenge. To highlight the advantages of surface silanization, we systematically explored the influence of the core/multishell architecture of CdSe/CdS/ZnS QDs and the silanization conditions on the optical properties of the resulting silanized QDs. Our results show that the optical properties of silica-coated CdSe/CdS/ZnS QDs are best preserved in the presence of a thick CdS (6 monolayers (ML)) intermediate shell, providing a high photoluminescence quantum yield (PL QY), and a relatively thick ZnS (4.5 ML) external shell, effectively shielding the QDs from the chemical changes during silica coating. In addition to the QD core/shell architecture, other critical parameters of the silica-coating process, that can have an influence on the optical properties of the QD, include the choice of the surfactant and its concentration used for silica coating. The highest PL QY of about 46% was obtained by a microemulsion silica-coating procedure with the surfactant Brij L4, making these water-dispersible QDs to well-suited optical reporters in future applications like fluorescence immunoassays, biomedicine, and bioimaging.

摘要

发光纳米粒子,如半导体纳米晶体(称为量子点,QD),由于其明亮且稳定的光致发光特性,是生物传感和生物成像应用的有前途的候选者。由于高质量的 QD 通常在有机溶剂中合成,因此需要开发策略将其转化为水分散体,而不会影响其光学性质,并防止在后续修饰步骤(如与抗体或 DNA 的生物功能化)中发生变化。尽管已经进行了大量关于合适的表面改性程序的研究,但为纳米生物技术应用制备水溶性 QD 仍然是一个挑战。为了突出表面硅烷化的优势,我们系统地研究了 CdSe/CdS/ZnS QD 的核/多壳结构和硅烷化条件对所得硅烷化 QD 光学性质的影响。我们的结果表明,在存在厚 CdS(6 个单层(ML))中间壳的情况下,硅涂层 CdSe/CdS/ZnS QD 的光学性质得到了最佳保留,提供了高的光致发光量子产率(PLQY)和相对较厚的 ZnS(4.5 ML)外部壳,有效地将 QD 屏蔽在硅涂层过程中的化学变化。除了 QD 核/壳结构外,硅涂层过程的其他关键参数,也会影响 QD 的光学性质,包括用于硅涂层的表面活性剂及其浓度的选择。使用表面活性剂 Brij L4 的微乳液硅涂层程序获得了约 46%的最高 PLQY,使这些水分散的 QD 成为荧光免疫分析、生物医学和生物成像等未来应用的理想光学报告器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验